Insect pests and management technologies in dryland wheat in Washington

1996 ◽  
Vol 11 (2-3) ◽  
pp. 104-107
Author(s):  
K. S. Pike ◽  
L. K. Tanigoshi

AbstractSix species of ophids (Homoptera: Aphididae) are the most economically significant insect pests of wheat in Washington. Management technologies under development or in use in Washington emphasize biorational approaches, including development and use of resistance germplasm, manipulation of pest populations through cropping systems, and development of biological controls. We review wheat yield losses caused by aphids, their biological control, and the effects of conservation tillage and systemic seed treatment.

2021 ◽  
Author(s):  
Ines Gwendolyn Jendritzki ◽  
Henri E. Z. Tonnang ◽  
Paul-André Calatayud ◽  
Christian Borgemeister ◽  
Tino Johansson ◽  
...  

Abstract Climate change (CC) is expected to significantly affect biodiversity and ecosystem services. Adverse impacts from CC in the Global South are likely to be exacerbated by limited capacities to take adequate adaptation measures and existing developmental challenges. Insect pests today are already causing considerable yield losses in agricultural crop production in East Africa. Studies have shown that insects are strongly responding to CC by proliferation, shift in distribution or by altering their phenology, which is why an impact on agriculture can also be expected. Biological control (BC) has been proposed as an alternative measure to sustainably contain insect pests but few studies predict its efficacy under future CC. Using the species distribution modelling approach Maxent, we predict the current and future distribution of three important lepidopteran stem borer pests of maize in eastern Africa, i.e., Busseola fusca (Fuller, 1901), Chilo partellus (Swinhoe, 1885) and Sesamia calamistis (Hampson, 1910), and two of their parasitoids that are currently used for BC, i.e., Cotesia flavipes (Cameron, 1891) and Cotesia sesamiae (Cameron, 1906) . Based on these potential distributions and data collected during household surveys with local farmers in Kenya and Tanzania, future maize yield losses are predicted for a business-as-usual scenario and a sustainable development scenario. Accordingly, we found that BC of the three stem borer pests by C. flavipes and C. sesamiae will be less effective under more severe CC resulting in a reduced ability to curb maize yield losses caused by the stem borers. These results highlight the need to adapt BC measures to future CC to maintain its potential for environmentally-friendly pest management strategies. The findings of this research are thus of particular relevance to policy makers, extension officers and farmers in the region and will aid the adaptation of smallholder agricultural practices to current and future impacts of CC.


1988 ◽  
Vol 3 (2-3) ◽  
pp. 77-82 ◽  
Author(s):  
James H. Lashomb ◽  
William Metterhouse ◽  
Robert Chianese

AbstractThe U.S. public is expressing strong preference for the use of biological control methods in the management of U.S. agricultural, forest, and rangeland insect pests. This follows from a widespread understanding among citizens that synthetic insecticides have potentially harmful side effects on humans and that they are spreading increasingly as pollutants in the environment. Major recent increases in the number of pesticide-resistant insect species also put pressure on the agricultural community toward adoption of alternative non-agchemical plant and animal protection strategies. Movement in the direction of such alternatives has been facilitated by the fact that in the last two decades much progress has been made in Integrated Pest Management (IPM) through an improved understanding of the interactions of pests with their hosts. In that time period, many advances have been made in describing and predicting insect movement, seasonal cycles, and the effects of secondary plant compounds on insect reproduction. Simultaneously, much has been learned about the behavior, physiology, and population dynamics of insect parasitoids, i.e. parasites on insect pests. In the 1990's and subsequently, Biological Control Intensive Pest Management (BCIPM) will require continuing research to attain needed advancement in knowledge of growth and development of host plants, population dynamics of pests and parasitoids, and ecology of secondary pests that may interfere with implementation of BCIPM programs. Extension and research personnel will then be increasingly able to devise useful control methods for pests within selected cropping systems. We describe here examples to illustrate present and potential future use of BCIPM in different practical plant systems in New Jersey.


2003 ◽  
Vol 32 (3) ◽  
pp. 155-159 ◽  
Author(s):  
Deng Xi-Ping ◽  
Shan Lun ◽  
Inanaga Shinobu ◽  
Keren Rami

The greatest fear from global climate change is drought, and water is the most important factor influencing wheat growth. Soil and water conservation are, therefore, key requirements for sustaining productivity and environmental quality in semi-arid cropping systems. Great attention has been paid to the management of, demand for, and more efficient use of water. The comprehensive technical strategies reviewed in this paper include conserving water to combine both increased agricultural productivity and resource conservation; enquiries into how wheat plants respond to drought through morphological, physiological and metabolic modifications that occur in all plant organs; breeding for drought tolerance where there is a delineated stress environment and genotype × environment interactions are stable; and effective conservation of rainfall and high efficiency of use. Valuable techniques such as conservation tillage, mulch cultivation, limited irrigation, introduction of drought-tolerant varieties and rotation systems can be adjusted to local agricultural practices.


2021 ◽  
Vol 3 (2) ◽  
pp. 383-393
Author(s):  
Patient Farsia Djidjonri ◽  
Nukenine Elias Nchiwan ◽  
Hartmut Koehler

The present study investigates the effect of intercropping (maize-cowpea, maize-okra, maize-okra-cowpea, okra-cowpea) compared to insecticide application on the level of infestation of insect pests and the final yield of maize, cowpea and okra. Field experiments were conducted during the 2016 and 2017 cropping seasons in the Guinean Savannah (Dang-Ngaoundere) and Sudano Sahelian (Gouna-Garoua) agro-ecological zones in Cameroon. Our experimental design was a split plot arrangement in a randomized complete block with four replications. The main factor was assigned to the use of insecticide (Cypermethrin) and sub plots were devoted for cropping systems. We compared the efficiency of intercropping to that of Cypermethrin application on the Yield of maize, cowpea and okra as influenced by insect pest damages. The comparison of monocropped sprayed by Cypermethrin to unsprayed showed that, in Dang, insect pests reduced maize yield by 37% and 24% in 2016 and 2017, respectively, whereas in Gouna, it was lower than 8% during the both years. Reduction in seed yield by insect pests on cowpea in Dang represented 47% and 50% in 2016 and 2017, respectively, whereas in Gouna, it was 55% and 63% in 2016 and 2017, respectively. For okra, insect pests reduced okra fruit yield by 25% and 44% in Dang and 23% and 28% in Gouna, respectively, in 2016 and 2017. Crop yield was lower in intercropping compared to monoculture due to competition of plants in association on different resources. Considering the total yields obtained from each intercropping, intercropping trials resulted generally in higher yields compared to mono-culture (LER > 1) in both sites and years but the respective yields were quite different. On the basis of the results obtained, we recommend maize-cowpea intercropping as a sustainable solution to reduce the infestation level of their pest insects.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Saba Baba Mohammed ◽  
Daniel Kwadjo Dzidzienyo ◽  
Muhammad Lawan Umar ◽  
Mohammad Faguji Ishiyaku ◽  
Pangirayi Bernard Tongoona ◽  
...  

Abstract Background Low plant density and wide intra-plant spacing in traditional cowpea cropping systems are among the factors responsible for low yield on farmers’ fields. Sole cropping and improved intercropping systems have been advocated in the last few years to increase yield in the dry savannah areas of Nigeria. This study investigated the level of adoption of high yielding cowpea cropping systems including factors that influenced their use and farmers’ perceived production constraints and preferences. A total of 420 farmers across 36 villages of northern Nigeria were interviewed, and data collected was analyzed using descriptive statistics to appraise farmers predominant cowpea cropping systems and factors that determine the use of sole versus intercropping were identified with the aid of binary logit regression. Furthermore, pairwise comparison ranking was deployed to understand farmers’ view of cowpea production constraints and preferred traits. Results The results revealed that, many of the farmers (42%) still grow cowpeas in the traditional intercropping and a good number (25%) cultivate the crop as a sole crop, while 23% had fields of cowpeas in both sole and intercropping systems. Farmers reported the incidence of high insect pests, limited access to land, desire to have multiple benefits, and assurance in the event of crop failure as reasons for preference for intercropping over sole planting. The pairwise comparison ranking of constraints and preferences revealed insect pests, Striga, drought and poor access to fertilizers as major constraints to increased productivity. Many farmers indicated high yield as the most preferred trait. Conclusions Findings indicate a need for increased education and training of cowpea farmers on the importance of growing cowpeas in sole cropping and or improved intercropping systems. Genetic improvement efforts should focus on developing cowpea varieties that address farmers production constraints and reflect the diversity of consumers’ preferences for the crop. Hence, breeding for resistance to insect pests and high yield is recommended as an important priority of cowpea breeding programmes in the region.


2004 ◽  
Vol 64 (2) ◽  
pp. 237-242 ◽  
Author(s):  
M. C. Lacerda ◽  
A. M. R. M. Ferreira ◽  
T. V. Zanuncio ◽  
J. C. Zanuncio ◽  
A. S. Bernardino ◽  
...  

Biological control has been reducing the use of chemical products against insect pests, specially predatory Pentatomidae. Species of this group can present high variations in their life cycle as a result of their diet. Thus, the objective of this research was to study nymph development and reproduction of Podisus distinctus (Stäl, 1860) (Heteroptera: Pentatomidae) fed on Bombyx mori L., 1758 (Lepidoptera: Bombycidae) larvae (T1), compared to those fed on Tenebrio molitor L., 1758 (Coleoptera: Tenebrionidae) (T2) and Musca domestica L., 1758 (Diptera: Muscidae) larvae (T3) at a temperature of 25 ± 0.5ºC, relative humidity of 70 ± 2%, and photophase of 12 h. Predators fed on B. mori showed duration of the nymph phase (18.68 ± 1.02) similar to those fed on T. molitor (18.32 ± 1.49). Pre-oviposition and oviposition periods and number of egg masses, besides eggs and nymphs per female, were higher with B. mori (5.83 ± 2.02; 15.00 ± 7.40; 8.42 ± 1.84; 296.69 ± 154.75; and 228.55 ± 141.04, respectively) while longevity of males and females of P. distinctus was 25.76 ± 16.15 and 35.00 ± 16.15 days with T. molitor, and 20.57 ± 13.60 and 23.46 ± 12.35 days with B. mori, respectively.


2005 ◽  
Vol 137 (4) ◽  
pp. 497-500 ◽  
Author(s):  
Tuilo B. Macedo ◽  
Paula A. Macedo ◽  
Robert K.D. Peterson ◽  
David K. Weaver ◽  
Wendell L. Morrill

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is an insect pest in dryland wheat cropping systems in the southern Canadian Prairies and the northern Great Plains of the United States (Morrill 1997). Yield losses caused by C. cinctus are due to reduced head weight (Holmes 1977; Morrill et al. 1992) and lodging, which decreases harvest efficiency. Estimates of yield losses in Montana alone are about US$25 million per year.


2012 ◽  
Vol 144 (6) ◽  
pp. 779-791 ◽  
Author(s):  
G.C. Cutler ◽  
J.M. Renkema ◽  
C.G. Majka ◽  
J.M. Sproule

AbstractThe Carabidae (Coleoptera) are a diverse family of beetles with almost 300 species identified in Nova Scotia, Canada. Carabid beetle communities have been studied in several agricultural systems, but not wild blueberries, an important crop in eastern Canada. In the interest of potentially developing conservation biological control programs in wild blueberry, we collected Carabidae in crop (fruit-bearing) and sprout (vegetative) blueberry fields in Nova Scotia in order to assess species diversity and abundance over space and time. Over 3200 specimens were collected, representing 51 species. A large portion of collected specimens (39%) were nonnative, and the most abundant species were generally predacious and synanthropic. Species diversity tended to be higher near forest edges than further into fields, but not for all abundant species. Several of the most prominent predators showed significant differences in preference of crop versus sprout fields, distribution throughout fields, and seasonable abundance. These findings have implications for conservation biological control efforts with carabid beetles against several insect pests in wild blueberry.


2004 ◽  
Vol 31 (2) ◽  
pp. 86-91 ◽  
Author(s):  
D. T. Gooden ◽  
H. D. Skipper ◽  
J. H. Kim ◽  
K. Xiong

Abstract Rhizobacteria play an important role in sustainable agriculture via plant growth and biological control of pests in a number of ecosystems. Understanding the interactions of crop rotation and rhizobacteria on peanut production is a critical research need. Development of a database on the rhizobacteria obtained from continuous and rotational fields of peanut was initiated in 1997 and terminated in 2000. Peanut was planted in monoculture for 4 yr. In rotational plots, peanut, cotton, corn, and peanut were planted in sequence. Rhizobacteria were isolated from the roots of crop plants grown in a Norfolk soil near Florence, SC. These isolates were identified by composition of fatty acids from gas chromatography analysis (GC/FAME). Arthrobacter and Bacillus were the major genera from non-rhizosphere soils. At initiation of this study in July 1997, the plots selected for continuous peanut had more diversity in rhizobacteria than those plots selected for rotation. In July 2000, rhizobacteria diversity was greater from peanut roots in the rotation cropping system than continuous peanut. Even though rhizobacteria diversity was greater in the rotation system, higher peanut yields were recorded in the continuous peanut system in 2000. Burkholderia spp. were always isolated from the peanut and other crop rhizospheres at each sampling date.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sardul Singh Sandhu ◽  
Anil K. Sharma ◽  
Vikas Beniwal ◽  
Gunjan Goel ◽  
Priya Batra ◽  
...  

The growing demand for reducing chemical inputs in agriculture and increased resistance to insecticides have provided great impetus to the development of alternative forms of insect-pest control. Myco-biocontrol offers an attractive alternative to the use of chemical pesticides. Myco-biocontrol agents are naturally occurring organisms which are perceived as less damaging to the environment. Their mode of action appears little complex which makes it highly unlikely that resistance could be developed to a biopesticide. Past research has shown some promise of the use of fungi as a selective pesticide. The current paper updates us about the recent progress in the field of myco-biocontrol of insect pests and their possible mechanism of action to further enhance our understanding about the biological control of insect pests.


Sign in / Sign up

Export Citation Format

Share Document