scholarly journals Formal analysis of design process dynamics

Author(s):  
Tibor Bosse ◽  
Catholijn M. Jonker ◽  
Jan Treur

AbstractThis paper presents a formal analysis of design process dynamics. Such a formal analysis is a prerequisite to come to a formal theory of design and for the development of automated support for the dynamics of design processes. The analysis was geared toward the identification of dynamic design properties at different levels of aggregation. This approach is specifically suitable for component-based design processes. A complicating factor for supporting the design process is that not only the generic properties of design must be specified, but also the language chosen should be rich enough to allow specification of complex properties of the system under design. This requires a language rich enough to operate at these different levels. The Temporal Trace Language used in this paper is suitable for that. The paper shows that the analysis at the level of a design process as a whole and at subprocesses thereof is precise enough to allow for automatic simulation. Simulation allows the modeler to manipulate the specifications of the system under design to better understand the interlevel relationships in his design. The approach is illustrated by an example.

Author(s):  
Camilo POTOCNJAK-OXMAN

Stir was a crowd-voted grants platform aimed at supporting creative youth in the early stages of an entrepreneurial journey. Developed through an in-depth, collaborative design process, between 2015 and 2018 it received close to two hundred projects and distributed over fifty grants to emerging creatives and became one of the most impactful programs aimed at increasing entrepreneurial activity in Canberra, Australia. The following case study will provide an overview of the methodology and process used by the design team in conceiving and developing this platform, highlighting how the community’s interests and competencies were embedded in the project itself. The case provides insights for people leading collaborative design processes, with specific emphasis on some of the characteristics on programs targeting creative youth


2016 ◽  
Vol 11 (1) ◽  
pp. 34
Author(s):  
Maral Babapour Chafi

Designers engage in various activities, dealing with different materials and media to externalise and represent their form ideas. This paper presents a review of design research literature regarding externalisation activities in design process: sketching, building physical models and digital modelling. The aim has been to review research on the roles of media and representations in design processes, and highlight knowledge gaps and questions for future research.


Author(s):  
Ehud Kroll ◽  
Lauri Koskela

AbstractThe mechanism of design reasoning from function to form is suggested to consist of a two-step inference of the innovative abduction type. First is an inference from a desired functional aspect to an idea, concept, or solution principle to satisfy the function. This is followed by a second innovative abduction, from the latest concept to form, structure, or mechanism. The intermediate entity in the logical reasoning, the concept, is thus made explicit, which is significant in following and understanding a specific design process, for educating designers, and to build a logic-based computational model of design. The idea of a two-step abductive reasoning process is developed from the critical examination of several propositions made by others. We use the notion of innovative abduction in design, as opposed to such abduction where the question is about selecting among known alternatives, and we adopt a previously proposed two-step process of abductive reasoning. However, our model is different in that the two abductions used follow the syllogistic pattern of innovative abduction. In addition to using a schematic example from the literature to demonstrate our derivation, we apply the model to an existing, empirically derived method of conceptual design called “parameter analysis” and use two examples of real design processes. The two synthetic steps of the method are shown to follow the proposed double innovative abduction scheme, and the design processes are presented as sequences of double abductions from function to concept and from concept to form, with a subsequent deductive evaluation step.


Author(s):  
Michael J. Safoutin ◽  
Robert P. Smith

Abstract As engineering design is subjected to increasingly formal study, an informal attitude continues to surround the topic of iteration. Today there is no standard definition or typology of iteration, no grounding theory, few metrics, and a poor understanding of its role in the design process. Existing literature provides little guidance in investigating issues of design that might be best approached in terms of iteration. We review contributions of existing literature toward the understanding of iteration in design, develop a classification of design iteration, compare iterative aspects of human and automated design, and draw some conclusions concerning management of iteration and approaches to design automation.


Author(s):  
Masaharu Yoshioka ◽  
Tetsuo Tomiyama

Abstract Most of the previous research efforts for design process modeling had such assumptions as “design as problem solving,” “design as decision making,” and “design by analysis,” and did not explicitly address “design as synthesis.” These views lack notion and understanding about synthesis. Compared with analysis, synthesis is less understood and clarified. This paper discusses our fundamental view on synthesis and approach toward a reasoning framework of design as synthesis. To do so, we observe the designer’s activity and formalize knowledge operations in design processes. From the observation, we propose a hypothetical reasoning framework of design based on multiple model-based reasoning. We discuss the implementation strategy for the framework.


2021 ◽  
Vol 11 (20) ◽  
pp. 9430
Author(s):  
Fabiola Cortes-Chavez ◽  
Alberto Rossa-Sierra ◽  
Elvia Luz Gonzalez-Muñoz

The medical device design process has a responsibility to define the characteristics of the object to ensure its correct interaction with users. This study presents a proposal to improve medical device design processes in order to increase user acceptance by considering two key factors: the user hierarchy and the relationship with the patient’s health status. The goal of this study is to address this research gap and to increase design factors with practical suggestions for the design of new medical devices. The results obtained here will help medical device designers make more informed decisions about the functions and features required in the final product during the development stage. In addition, we aim to help researchers with design process didactics that demonstrate the importance of the correct execution of the process and how the factors considered can have an impact on the final product. An experiment was conducted with 40 design engineering students who designed birthing beds via two design processes: the traditional product design process and the new design process based on hierarchies (proposed in this study). The results showed a significant increase in the user acceptance of the new birthing bed developed with the hierarchical-based design process.


Design Issues ◽  
2018 ◽  
Vol 34 (4) ◽  
pp. 80-95 ◽  
Author(s):  
Liesbeth Huybrechts ◽  
Katrien Dreessen ◽  
Ben Hagenaars

Designers are increasingly involved in designing alternative futures for their cities, together with or self-organized by citizens. This article discusses the fact that (groups of) citizens often lack the support or negotiation power to engage in or sustain parts of these complex design processes. Therefore the “capabilities” of these citizens to collectively visualize, reflect, and act in these processes need to be strengthened. We discuss our design process of “democratic dialogues” in Traces of Coal—a project that researches and designs together with the citizens an alternative spatial future for a partially obsolete railway track in the Belgian city of Genk. This process is framed in a Participatory Design approach and, more specifically, in what is called “infrastructuring,” or the process of developing strategies for the long-term involvement of participants in the design of spaces, objects, or systems. Based on this process, we developed a typology of how the three clusters of capabilities (i.e., visualize, reflect, and act) are supported through democratic dialogues in PD processes, linking them to the roles of the designer, activities, and used tools.


Author(s):  
A. Brychtová ◽  
A. Çöltekin ◽  
V. Pászto

In this study, we first develop a hypothesis that existing quantitative visual complexity measures will overall reflect the level of cartographic generalization, and test this hypothesis. Specifically, to test our hypothesis, we first selected common geovisualization types (i.e., cartographic maps, hybrid maps, satellite images and shaded relief maps) and retrieved examples as provided by Google Maps, OpenStreetMap and SchweizMobil by swisstopo. Selected geovisualizations vary in cartographic design choices, scene contents and different levels of generalization. Following this, we applied one of Rosenholtz et al.’s (2007) visual clutter algorithms to obtain quantitative visual complexity scores for screenshots of the selected maps. We hypothesized that visual complexity should be constant across generalization levels, however, the algorithm suggested that the complexity of small-scale displays (less detailed) is higher than those of large-scale (high detail). We also observed vast differences in visual complexity among maps providers, which we attribute to their varying approaches towards the cartographic design and generalization process. Our efforts will contribute towards creating recommendations as to how the visual complexity algorithms could be optimized for cartographic products, and eventually be utilized as a part of the cartographic design process to assess the visual complexity.


Author(s):  
Jeong-Soo Ahn ◽  
Kyihwan Park ◽  
Richard H. Crawford

Abstract Design activities consists not only of product design, but also of development of the process by which the product will be designed. However, development and documentation of computational design processes are largely unsupported by commercial CAD systems. This paper proposes a new computational architecture for procedural representation of embodiment design processes. A design actor is defined as an independent computational unit of the design process. The proposed architecture models a design process as a sequence of design tasks by representing individual parameters and tasks as design actors, and the sequence of design tasks as a network of design actors assembled according to their functional dependencies. The use of design actors promotes modularity in representing design problems and solution processes. Iterative design processes can be represented since the architecture provides explicit feedforward and feedback information exchange between design actors. The paper describes an object-oriented implementation of the design actor architecture, and demonstrates the approach with an example design of an air-core solenoid in an optical disk drive.


2012 ◽  
pp. 1613-1637
Author(s):  
William Stuart Miller ◽  
Joshua D. Summers

A new design process modeling approach focused on the information flow through design tools is discussed in this chapter. This approach is applied to three long term mechanical engineering design projects spanning 24 months, 12 months, and 4 months. These projects are used to explore the development of the new modeling approach. This is a first step in a broader effort in 1) modeling of design processes, 2) establishing case study research as a formal approach to design research, and 3) developing new design process tools. The ability of engineers to understand the dynamic nature of information throughout the design processes is critical to their ability to complete these tasks. Such understanding promotes learning and further exploration of the design process allowing the improvement of process models, the establishment of new research approaches, and the development of new tools. Thus, enhancing this understanding is the goal of this research effort.


Sign in / Sign up

Export Citation Format

Share Document