scholarly journals Apramycin resistance plasmids inEscherichia coli: possible transfer toSalmonella typhimuriumin calves

1992 ◽  
Vol 108 (2) ◽  
pp. 271-278 ◽  
Author(s):  
J. E. B. Hunter ◽  
J. C. Shelley ◽  
J. R. Walton ◽  
C. A. Hart ◽  
M. Bennett

SUMMARYAn outbreak of salmonellosis in calves was monitored for persistence ofSalmonella typhimuriumexcretion in faeces and the effect of treatment with apramycin. Prior to treatment apramycin-resistantEscherichia coliwere present but allS. typhimuriumisolates were sensitive. Following the treatment of six calves with apramycin, apramycin-resistantS. typhimuriumwere isolated from two treated calves and one untreated calf. Plasmid profiles ofE. coliandS. typhimuriumwere compared and plasmids conferring resistance to apramycin and several other antibiotics were transferred by conjugationin vitrofrom calfE. coliandS. typhimuriumisolates toE. coliK-12 and fromE. colitoS. typhimurium. The plasmids conjugated with high frequencyin vitrofromE. colitoS. typhimurium, and hybridized to a DNA probe specific for the gene encoding aminoglycoside acetyltransferase 3-IV (AAC(3)-IV) which confers resistance to apramycin, gentamicin, netilmicin and tobramycin.

1991 ◽  
Vol 54 (7) ◽  
pp. 496-501 ◽  
Author(s):  
ARTHUR HINTON ◽  
GEORGE E. SPATES ◽  
DONALD E. CORRIER ◽  
MICHAEL E. HUME ◽  
JOHN R. DELOACH ◽  
...  

A Veillonella species and Enterococcus durans were isolated from the cecal contents of adult broilers. Mixed cultures of Veillonella and E. durans inhibited the growth of Salmonella typhimurium and Escherichia coli 0157:H7 on media containing 2.5% lactose (w/v). The growth of S. typhimurium or E. coli 0157:H7 was not inhibited by mixed cultures containing Veillonella and E. durans on media containing only 0.25% lactose or by pure cultures of Veillonella or E. durans on media containing either 0.25% or 2.5% lactose. The mixed cultures of Veillonella and E. durans produced significantly (P<0.05) more acetic, propionic, and lactic acids in media containing 2.5% lactose than in media containing 0.25% lactose. The inhibition of the enteropathogens was related to the production of lactic acid from lactose by the E. durans and the production of acetic and propionic acids from lactic acid by the Veillonella.


2021 ◽  
Vol 31 (4) ◽  
pp. 2
Author(s):  
IDSAP Peramiarti

Diarrhea is defecation with a frequency more often than usual (three times or more) a day (10 mL/kg/day) with a soft or liquid consistency, even in the form of water alone. Pathogenic bacteria, such as Escherichia coli, Salmonella typhimurium, and Shigella sp., play a role in many cases, to which antibiotics are prescribed as the first-line therapy. However, since antibiotic resistance cases are often found, preventive therapies are needed, such as consuming yogurt, which is produced through a fermentation process by lactic acid bacteria (LAB). This research aimed to determine the activity of lactic acid bacteria (Liactobacillus bulgaricus and Streptococcus thermophilus) in yogurt in inhibiting the growth of the pathogenic bacteria E. coli, S. typhimurium, and Shigella sp. The research applied in vitro with the liquid dilution test method and the true experimental design research method with post-test-only and control group design. The design was used to see the inhibitory effect of yogurt LAB on the growth of E. coli, S. typhimurium, and Shigell sp. to compare the effect of several different yogurt concentrations, namely 20%, 40%, 60%, and 80%. The results of the Least Significance Different analysis showed that there was a significant difference between yogurt with a concentration of 0% and that with various concentrations in inhibiting the growth of E. coli, S. typhimurium, and Shigella sp. with a p-value of &lt;0.05. Whereas, there was no significant difference in the various concentrations of yogurt in inhibiting the growth of the three kinds of bacteria with a p-value of &gt; 0.05.<p class="Default" align="center"> </p>


Microbiology ◽  
2020 ◽  
Vol 166 (9) ◽  
pp. 880-890 ◽  
Author(s):  
Hiroshi Ogasawara ◽  
Toshiyuki Ishizuka ◽  
Shuhei Hotta ◽  
Michiko Aoki ◽  
Tomohiro Shimada ◽  
...  

Under stressful conditions, Escherichia coli forms biofilm for survival by sensing a variety of environmental conditions. CsgD, the master regulator of biofilm formation, controls cell aggregation by directly regulating the synthesis of Curli fimbriae. In agreement of its regulatory role, as many as 14 transcription factors (TFs) have so far been identified to participate in regulation of the csgD promoter, each monitoring a specific environmental condition or factor. In order to identify the whole set of TFs involved in this typical multi-factor promoter, we performed in this study ‘promoter-specific transcription-factor’ (PS-TF) screening in vitro using a set of 198 purified TFs (145 TFs with known functions and 53 hitherto uncharacterized TFs). A total of 48 TFs with strong binding to the csgD promoter probe were identified, including 35 known TFs and 13 uncharacterized TFs, referred to as Y-TFs. As an attempt to search for novel regulators, in this study we first analysed a total of seven Y-TFs, including YbiH, YdcI, YhjC, YiaJ, YiaU, YjgJ and YjiR. After analysis of curli fimbriae formation, LacZ-reporter assay, Northern-blot analysis and biofilm formation assay, we identified at least two novel regulators, repressor YiaJ (renamed PlaR) and activator YhjC (renamed RcdB), of the csgD promoter.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Anne-Claire Mahérault ◽  
Harry Kemble ◽  
Mélanie Magnan ◽  
Benoit Gachet ◽  
David Roche ◽  
...  

ABSTRACT Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomohiro Shimada ◽  
Yui Yokoyama ◽  
Takumi Anzai ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama

AbstractOutside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization).


2010 ◽  
Vol 76 (14) ◽  
pp. 4655-4663 ◽  
Author(s):  
Sean M. Lee ◽  
Aaron Wyse ◽  
Aaron Lesher ◽  
Mary Lou Everett ◽  
Linda Lou ◽  
...  

ABSTRACT Although mice associated with a single bacterial species have been used to provide a simple model for analysis of host-bacteria relationships, bacteria have been shown to display adaptability when grown in a variety of novel environments. In this study, changes associated with the host-bacterium relationship in mice monoassociated with Escherichia coli K-12 over a period of 1,031 days were evaluated. After 80 days, phenotypic diversification of E. coli was observed, with the colonizing bacteria having a broader distribution of growth rates in the laboratory than the parent E. coli. After 1,031 days, which included three generations of mice and an estimated 20,000 generations of E. coli, the initially homogeneous bacteria colonizing the mice had evolved to have widely different growth rates on agar, a potential decrease in tendency for spontaneous lysis in vivo, and an increased tendency for spontaneous lysis in vitro. Importantly, mice at the end of the experiment were colonized at an average density of bacteria that was more than 3-fold greater than mice colonized on day 80. Evaluation of selected isolates on day 1,031 revealed unique restriction endonuclease patterns and differences between isolates in expression of more than 10% of the proteins identified by two-dimensional electrophoresis, suggesting complex changes underlying the evolution of diversity during the experiment. These results suggest that monoassociated mice might be used as a tool for characterizing niches occupied by the intestinal flora and potentially as a method of targeting the evolution of bacteria for applications in biotechnology.


2001 ◽  
Vol 183 (17) ◽  
pp. 5198-5202 ◽  
Author(s):  
Pongpan Laksanalamai ◽  
Dennis L. Maeder ◽  
Frank T. Robb

ABSTRACT The small heat shock protein (sHSP) from the hyperthermophilePyrococcus furiosus was specifically induced at the level of transcription by heat shock at 105°C. The gene encoding this protein was cloned and overexpressed in Escherichia coli. The recombinant sHSP prevented the majority of E. coli proteins from aggregating in vitro for up to 40 min at 105°C. The sHSP also prevented bovine glutamate dehydrogenase from aggregating at 56°C. Survivability of E. colioverexpressing the sHSP was enhanced approximately sixfold during exposure to 50°C for 2 h compared with the control culture, which did not express the sHSP. Apparently, the sHSP confers a survival advantage on mesophilic bacteria by preventing protein aggregation at supraoptimal temperatures.


1993 ◽  
Vol 289 (1) ◽  
pp. 81-85 ◽  
Author(s):  
J Quinn ◽  
A G Diamond ◽  
A K Masters ◽  
D E Brookfield ◽  
N G Wallis ◽  
...  

The dihydrolipoamide acetyltransferase subunit (E2p) of mammalian pyruvate dehydrogenase complex has two highly conserved lipoyl domains each modified with a lipoyl cofactor bound in amide linkage to a specific lysine residue. A sub-gene encoding the inner lipoyl domain of human E2p has been over-expressed in Escherichia coli. Two forms of the domain have been purified, corresponding to lipoylated and non-lipoylated species. The apo-domain can be lipoylated in vitro with partially purified E. coli lipoate protein ligase, and the lipoylated domain can be reductively acetylated by human E1p (pyruvate dehydrogenase). Availability of the two forms will now allow detailed biochemical and structural studies of the human lipoyl domains.


1968 ◽  
Vol 110 (3) ◽  
pp. 597-602 ◽  
Author(s):  
M. C. Jones-Mortimer

1. The function of the wild-type alleles of the pleiotropic mutants cysB and cysE of Escherichia coli was investigated. 2. The wild-type allele cysB+ is dominant to the mutant allele cysB in stable and transient heterozygotes. 3. The wild-type allele cysE+ is dominant to the mutant allele cysE, as predicted. 4. Sulphur-starved cultures of cysB or cysE strains contain less than 0·2nmole of free cysteine/mg. dry wt. 5. Complementation in vitro is not observed between extracts of cysB mutants and mutants lacking sulphite reductase only. 6. A scheme, involving positive control of the enzymes of sulphate activation and reduction, is suggested to account for the control of cysteine biosynthesis.


2005 ◽  
Vol 71 (12) ◽  
pp. 8008-8015 ◽  
Author(s):  
Alfredo G. Torres ◽  
Cecelia Jeter ◽  
William Langley ◽  
Ann G. Matthysse

ABSTRACT Escherichia coli O157:H7 carried on plant surfaces, including alfalfa sprouts, has been implicated in food poisoning and outbreaks of disease in the United States. Adhesion to cell surfaces is a key component for bacterial establishment and colonization on many types of surfaces. Several E. coli O157:H7 surface proteins are thought to be important for adhesion and/or biofilm formation. Therefore, we examined whether mutations in several genes encoding potential adhesins and regulators of adherence have an effect on bacterial binding to plants and also examined the role of these genes during adhesion to Caco-2 cells and during biofilm formation on plastic in vitro. The genes tested included those encoding adhesins (cah, aidA1, and ompA) and mediators of hyperadherence (tdcA, yidE, waaI, and cadA) and those associated with fimbria formation (csgA, csgD, and lpfD2). The introduction of some of these genes (cah, aidA1, and csg loci) into an E. coli K-12 strain markedly increased its ability to bind to alfalfa sprouts and seed coats. The addition of more than one of these genes did not show an additive effect. In contrast, deletion of one or more of these genes in a strain of E. coli O157:H7 did not affect its ability to bind to alfalfa. Only the absence of the ompA gene had a significant effect on binding, and the plant-bacterium interaction was markedly reduced in a tdcA ompA double mutant. In contrast, the E. coli O157:H7 ompA and tdcA ompA mutant strains were only slightly affected in adhesion to Caco-2 cells and during biofilm formation. These findings suggest that some adhesins alone are sufficient to promote binding to alfalfa and that they may exist in E. coli O157:H7 as redundant systems, allowing it to compensate for the loss of one or more of these systems. Binding to the three types of surfaces appeared to be mediated by overlapping but distinct sets of genes. The only gene which appeared to be irreplaceable for binding to plant surfaces was ompA.


Sign in / Sign up

Export Citation Format

Share Document