Characterization of isolated bovine preantral follicles based on morphology, diameter and cell number

Zygote ◽  
2020 ◽  
Vol 28 (2) ◽  
pp. 154-159
Author(s):  
Juliana I. Candelaria ◽  
Anna C. Denicol

SummaryPreantral follicles are a potential reservoir of oocytes to be used in assisted reproductive technologies. With the increasing interest in developing techniques to grow preantral follicles in vitro, and as the bovine emerges as an appropriate model species to understand human folliculogenesis, the establishment of an accurate classification of developmental stages is needed. Classification of bovine preantral follicles has been mostly based on histological analysis and estimation models, which may not translate well to correctly characterize preantral follicles isolated from the ovary. In this study, we classified bovine preantral follicles by morphology upon isolation, determined diameter and number of granulosa cells by direct counting, and compared our results with previous studies reporting bovine preantral follicle classification. Follicles were isolated via homogenization of ovary tissue and classified into primary, early secondary and secondary stage based on morphology and number of layers of granulosa cells. Diameter was individually measured and Hoechst 33342 was used as a nuclear stain to count granulosa cells. We found that follicles classified by morphology into primary, early secondary, and secondary had different mean diameter and cell number (P < 0.01); cell number and diameter were positively correlated, as were cell density and cell number in each developmental stage (P < 0.01). Results obtained here were mostly in agreement with previous classifications based on histological sections and on isolated follicles, with some discrepancies. The present data add accuracy to classification of bovine preantral follicles that is critical to optimize culture conditions to produce developmentally competent oocytes.

Zygote ◽  
2018 ◽  
Vol 26 (5) ◽  
pp. 424-429
Author(s):  
AB Brito ◽  
DCC Brito ◽  
W B Silva ◽  
APR Rodrigues ◽  
JR Figueiredo ◽  
...  

SummaryOvarian biopsies from five health adult monkeys were collected by exploratory laparotomy. Preantral follicles (primordial, primary, and secondary) were classified as normal or degenerated and submitted to morphometric analysis in which granulosa cell counts and the areas of follicles, oocytes, and oocyte nuclei were measured. Ovarian fragments were also immunolabelled for the quantitative analysis of VEGFA and CD31 protein expression in the ovarian tissue and in the preantral follicles. In total, 213 preantral follicles was examined for morphometry and morphological classification. From this total, 20 (9.4%) were follicles enclosing two or more oocytes, i.e. multi-oocyte follicles (MOFs). From the 193 follicles enclosing only one oocyte, 46.3% were classified as primordial, 24,1% as transition, 23.3% as primary, and 6.3% as secondary follicles. The mean number of granulosa cells surrounding primordial, transition, primary, and secondary follicles was 9.2, 12.1, 18.7, and 45.3, respectively. Increase in oocyte diameter was observed from primary to secondary follicles, while the oocyte nucleus increased only when follicles reached the secondary stage. The expression of CD31 was strong in vessels, corpus luteum, and in normal oocytes and granulosa cells from preantral follicles at all developmental stages. Likewise, VEGFA expression was observed in vessels and preantral follicles (granulosa cells, the oocyte and the oocyte nucleus). We characterized the morphology, and morphometry and expression of angiogenic factors in normal and atretic preantral follicles fromSapajus apella. This description can support the analysis of follicular quality and survival after procedures such as transplantation and cryopreservation.


2017 ◽  
Vol 8 (4) ◽  
pp. 403-410 ◽  
Author(s):  
S. K. Feuer ◽  
P. F. Rinaudo

Approximately 1–4% of children today are conceived using assisted reproductive technologies (ARTs), includingin vitrofertilization (IVF). IVF is considered safe and the great majority of these children are healthy, yet there is increasing physiological and molecular evidence from animal models that ART is associated with postnatal metabolic and cardiovascular alterations. Understanding the mechanisms underlying these changes and determining whether they have biological significance is of paramount importance for optimizing the design of culture conditions and improving the health of ART children across the life course. In this review, we examine the evidence of molecular changes present in adult tissues of rodent offspring generated by preimplantation manipulation of gametes and embryos. Although embryo manipulationin vitrocan induce common transcriptional effects in the blastocyst, transcriptional and metabolomic signatures in adult IVF tissues are largely tissue-specific. However, there is pervasive evidence of oxidative stress and metabolic dysfunction, indicating a lasting effect of IVF on molecular physiology.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sebastian Canovas ◽  
Elena Ivanova ◽  
Raquel Romar ◽  
Soledad García-Martínez ◽  
Cristina Soriano-Úbeda ◽  
...  

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.


2020 ◽  
Vol 47 (2) ◽  
pp. 85-93
Author(s):  
Jihyun Kim ◽  
Jaewang Lee ◽  
Jin Hyun Jun

The implantation process is highly complex and difficult to mimic <i>in vitro</i>, and a reliable experimental model of implantation has yet to be established. Many researchers have used embryo transfer (ET) to assess implantation potential; however, ET with pseudopregnant mice requires expert surgical skills and numerous sacrificial animals. To overcome those economic and ethical problems, several researchers have tried to use outgrowth models to evaluate the implantation potential of embryos. Many previous studies, as well as our experiments, have found significant correlations between blastocyst outgrowth <i>in vitro</i> and implantation in utero by ET. This review proposes the blastocyst outgrowth model as a possible alternative to animal experimentation involving ET in utero. In particular, the outgrowth model might be a cost- and time-effective alternative method to ET for evaluating the effectiveness of culture conditions or treatments. An advanced outgrowth model and further culture of outgrowth embryos could provide a subtle research model of peri- and postimplantation development, excluding maternal effects, and thereby could facilitate progress in assisted reproductive technologies. Recently, we found that outgrowth embryos secreted extracellular vesicles containing specific microRNAs. The function of microRNAs from outgrowth embryos should be elucidated in further researches.


2015 ◽  
Vol 27 (8) ◽  
pp. 1125 ◽  
Author(s):  
Michael J. Bertoldo ◽  
Yann Locatelli ◽  
Christopher O'Neill ◽  
Pascal Mermillod

The processes of assisted reproductive technologies (ART) involve a variety of interventions that impact on the oocyte and embryo. Critically, these interventions cause considerable stress and coincide with important imprinting events throughout gametogenesis, fertilisation and early embryonic development. It is now accepted that the IVM and in vitro development of gametes and embryos can perturb the natural course of development to varying degrees of severity. Altered gene expression and, more recently, imprinting disorders relating to ART have become a focused area of research. Although various hypotheses have been put forward, most research has been observational, with little attempt to discover the mechanisms and periods of sensitivity during embryo development that are influenced by the culture conditions following fertilisation. The embryo possesses innate survival factor signalling pathways, yet when an embryo is placed in culture, this signalling in response to in vitro stress becomes critically important in mitigating the effects of stresses caused by the in vitro environment. It is apparent that not all embryos possess this ability to adequately adapt to the stresses experienced in vitro, most probably due to an inadequate oocyte. It is speculated that it is important that embryos use their survival signalling mechanisms to maintain normal epigenetic programming. The seeming redundancy in the function of various survival signalling pathways would support this notion. Any invasion into the natural, highly orchestrated and dynamic process of sexual reproduction could perturb the normal progression of epigenetic programming. Therefore the source of gametes and the subsequent culture conditions of gametes and embryos are critically important and require careful attention. It is the aim of this review to highlight avenues of research to elucidate the effects of stress and the relationship with epigenetic programming. The short- and long-term health and viability of human and animal embryos derived in vitro will also be discussed.


2013 ◽  
Vol 27 (7) ◽  
pp. 1128-1141 ◽  
Author(s):  
Agne Velthut-Meikas ◽  
Jaak Simm ◽  
Timo Tuuri ◽  
Juha S. Tapanainen ◽  
Madis Metsis ◽  
...  

Abstract The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signaling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and in vitro fertilization success. However, the posttranscriptional gene expression studies on micro-RNA (miRNA) level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the 2 intrafollicular somatic cell types: mural and cumulus granulosa cells (MGCs and CGCs, respectively) isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Altogether, 936 annotated and 9 novel miRNAs were identified. Ninety of the annotated miRNAs were differentially expressed between MGCs and CGCs. Bioinformatic prediction revealed that TGFβ, ErbB signaling, and heparan sulfate biosynthesis were targeted by miRNAs in both granulosa cell populations, whereas extracellular matrix remodeling, Wnt, and neurotrophin signaling pathways were enriched among miRNA targets in MGCs. Two of the nine novel miRNAs found were of intronic origin: one from the aromatase and the other from the FSH receptor gene. The latter miRNA was predicted to target the activin signaling pathway. In addition to revealing the genome-wide miRNA signature in human granulosa cells, our results suggest that posttranscriptional regulation of gene expression by miRNAs could play an important role in the modification of gonadotropin signaling. miRNA expression studies could therefore lead to new prognostic markers in assisted reproductive technologies.


2019 ◽  
Vol 63 (3-4-5) ◽  
pp. 203-215 ◽  
Author(s):  
Niraimathi Govindasamy ◽  
Binyamin Duethorn ◽  
Hatice O. Oezgueldez ◽  
Yung S. Kim ◽  
Ivan Bedzhov

Mammalian embryogenesis is intrauterine and depends on support from the maternal environment. Therefore, in order to directly study and manipulate early mouse and human embryos, fine-tuned culture conditions have to be provided to maintain embryo growth in vitro. Over time, the establishment and implementation of embryo culture methods have come a long way, initially enabling the development of few pre-implantation stages, expanding later to support in vitro embryogenesis from fertilization until blastocyst and even ex utero development beyond the implantation stages. Designing culture conditions that enable near physiological development of early embryos without maternal input, especially during the peri- and post-implantation stages, requires overcoming numerous experimental challenges, and it is still far from optimal. Nevertheless, embryo culture methods are an essential cornerstone of both assisted reproductive technologies and basic research, and these methods provide a platform to understand life’s greatest miracle – the development of a new organism.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1038 ◽  
Author(s):  
Saqib Umer ◽  
Abdul Sammad ◽  
Huiying Zou ◽  
Adnan Khan ◽  
Bahlibi Weldegebriall Sahlu ◽  
...  

Anti-Mullerian hormone (AMH) is an important reproductive marker of ovarian reserve produced by granulosa cells (GCs) of pre-antral and early-antral ovarian follicles in several species, including cattle. This hormone plays a vital role during the recruitment of primordial follicles and follicle stimulating hormone (FSH)-dependent follicular growth. However, the regulatory mechanism of AMH expression in follicles is still unclear. In this study, we compared the expression of AMH, AMHR-II, BMP2, BMP6, FSHR, and LHCGR genes during follicular development. In-vitro expression study was performed with and without FSH for AMH, AMHR-II, BMP2, and BMP6 genes in bovine GCs which were isolated from 3–8 mm follicles. Association among the mRNA expression and hormone level was estimated. GCs were collected from small (3–8 mm), medium (9–12 mm) and large size (13 to 24 mm) follicles before, during onset, and after deviation, respectively. Further, mRNA expression, hormones (AMH, FSH, and LH), apoptosis of GCs, and cell viability were detected by qRT-PCR, ELISA, flow cytometry, and spectrophotometry. AMH, AMHR-II, BMP2, and FSHR genes were highly expressed in small and medium follicles as compared to large ones. In addition, the highest level of AMH protein (84.14 ± 5.41 ng/mL) was found in medium-size follicles. Lower doses of FSH increased the viability of bovine GCs while higher doses repressed them. In-vitro cultured GCs treated with FSH significantly increased the AMH, AMHR-II, and BMP2 expression levels at lower doses, while expression levels decreased at higher doses. We found an optimum level of FSH (25 ng/mL) which can significantly enhance AMH and BMP2 abundance (p < 0.05). In summary, AMH, AMHR-II, and BMP2 genes showed a higher expression in follicles developed in the presence of FSH. However, lower doses of FSH demonstrated a stimulatory effect on AMH and BMP2 expression, while expression started to decline at the maximum dose. In this study, we have provided a better understanding of the mechanisms regulating AMH, AMHR II, and BMP2 signaling in GCs during folliculogenesis, which would improve the outcomes of conventional assisted reproductive technologies (ARTs), such as superovulation and oestrus synchronization in bovines.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 873
Author(s):  
Joanna M.G. Souza-Fabjan ◽  
Lucas F.L. Correia ◽  
Ribrio I.T.P. Batista ◽  
Yann Locatelli ◽  
Vicente J.F. Freitas ◽  
...  

Reproductive seasonality may have a considerable influence on the efficiency of assisted reproductive technologies in seasonal species. This study evaluated the effect of season on cleavage, blastocyst rates and quality of in vitro produced (IVP) goat embryos. In total, 2348 cumulus–oocyte complexes (COCs) were recovered from slaughterhouse ovaries and subjected to the same IVP system throughout 1.5 years (49 replicates). The odds ratio (OR) among seasons was calculated from values of cleavage and blastocyst rates in each season. Cleavage rate was lower (p < 0.05) in spring (anestrus), in comparison with either autumn (peak of breeding season) or summer, while the winter had intermediate values. Furthermore, lower OR of cleavage was observed in spring. Blastocyst formation rate (from initial number of COCs) was higher (p < 0.05) in autumn (52 ± 2.5%) when compared with the other seasons (combined rates: 40 ± 1.9%). Moreover, its OR was higher (p < 0.05) in autumn compared to all other seasons and impaired in the spring compared to winter (OR: 0.54) and summer (OR: 0.48). Embryo hatchability and blastocyst cell number were similar (p > 0.05) among seasons. In conclusion, the breeding season leads to improved oocyte developmental competence, resulting in higher cleavage and blastocyst yield, whereas embryo quality remained similar throughout the years.


GYNECOLOGY ◽  
2018 ◽  
Vol 20 (1) ◽  
pp. 113-116
Author(s):  
L A Bagdasaryan ◽  
I E Korneyeva

The aim of the study is to systematically analyze the data available in the modern literature on the relationship between endometrial thickness and the frequency of pregnancy in the program of assisted reproductive technologies (ART). Materials and methods. The review includes data from foreign and domestic articles found in PubMed on this topic. Results. The article presents data on the relationship between the thickness of the endometrium and the frequency of pregnancy in ART programs. The greatest number of studies is devoted to the evaluation of the relationship between the thickness of the endometrium and the frequency of pregnancy on the day of the ovulation trigger. Data are presented on the existence of a correlation between the thickness of the endometrium measured on the day of the ovulation trigger and the frequency of clinical pregnancy, as well as data on the need to evaluate the structure of the endometrium and the state of subendometric blood flow. The importance of multilayered (three-layered) endometrium as a prognostic marker of success in in vitro fertilization/intracytoplasmic sperm injection programs in the ovum is emphasized. The conclusion. The thickness of the endometrium can not be used as an argument for canceling the cycle or abolishing embryo transfer to the uterine cavity. Further studies in this direction are needed with a study of the morphological and molecular genetic characteristics of the endometrium, which in the future will allow us to evaluate the relationship between the thickness of the endometrium and the probability of pregnancy.


Sign in / Sign up

Export Citation Format

Share Document