Vehicle motion and motion sickness in pigs

1998 ◽  
Vol 66 (1) ◽  
pp. 239-245 ◽  
Author(s):  
J. M. Randall ◽  
R. H. Bradshaw

AbstractLow frequency oscillatory motion (0·05 to 0·5 Hz) experienced in ships and road vehicles is known to cause motion sickness in humans and some predictive models are available. There have been very few studies of the incidence of motion sickness in pigs and none which has attempted to identify the frequencies of motion of transporters which are likely to be implicated. In this study, the vibration and motion characteristics of a commercial pig transporter were measured while seven individually penned 40-kg pigs were transported for short (100 min) journeys and 80-kg pigs penned in groups of 12 or 13 were transported for longer (4·5 h) journeys. Direct behavioural observations were made of individual pigs for symptoms of travel sickness (sniffing, foaming at the mouth, chomping, and retching or vomiting). A comparison was then made between the incidence of travel sickness in pigs and that expected in humans given the measured vehicle vibration characteristics. The low frequencies of motion measured on the transporter (0·01 to 0·2 Hz) were well within the range implicated in human motion sickness with considerable power in the longitudinal and lateral axes but little in the vertical axis. On both short and long journeys pigs exhibited symptoms of travel sickness. The likely incidence of travel sickness on the short journeys predicted by the human model was 24 to 31% which corresponds to approximately two of the seven 40-kg pigs becoming travel sick. The numbers observed were generally lower than this although the same pigs were transported twice each day for 2 days and this may have therefore reflected the effects of habituation. The incidence of travel sickness on the long journeys predicted by the human model was 34%. During these journeys which involved four groups of 80-kg pigs which were not repeatedly transported, 26% of pigs vomited or retched (13 out of 50) while 50% showed advanced symptoms of foaming and chomping. These results are not inconsistent with the human model which should form the basis offurther research.

Author(s):  
Spencer Salter ◽  
Cyriel Diels ◽  
Paul Herriotts ◽  
Stratis Kanarachos ◽  
Doug Thake

Background: Motion sickness is common within most forms of transport; it affects most of the population who experience varied symptoms at some stage in their lives. Thus far, there has been no specific method to quantify the predicted levels of motion sickness for a given vehicle design, task and route. Objective: To develop a motion sickness virtual prediction tool that includes the following inputs: human motion, vision, vehicle motion, occupant task and vehicle design. Method: A time domain analysis using a multi-body systems approach has been developed to provide the raw data for post-processing of vehicle motion, occupant motion and vision, based on a virtual route designed to provoke motion sickness, while the digital occupant undertakes a specific non-driving related task. Results: Predicted motion sickness levels are shared for a simple positional sweep of a vehicle cabin due to a prescribed motion and task. Two additional examples are shared within this study; first, it was found that the model can predict the difference found between sitting forwards and backwards in an autonomous vehicle. Second, analysis of a respected and independent study into auxiliary display height shows that the model can predict both relative and absolute levels between the two display heights congruent to the original physical experiment. Conclusion: It has been shown that the tool has been successful in predicting motion sickness in autonomous vehicles and is therefore of great use in guiding new future mobility solutions in the ability to tune vehicle dynamics and control alongside vision and design attributes.


2020 ◽  
Vol 101 (4) ◽  
pp. 2131-2143 ◽  
Author(s):  
Hailing Fu ◽  
Stephanos Theodossiades ◽  
Ben Gunn ◽  
Imad Abdallah ◽  
Eleni Chatzi

Abstract Harvesting ultra-low frequency random vibration, such as human motion or turbine tower oscillations, has always been a challenge, but could enable many potential self-powered sensing applications. In this paper, a methodology to effectively harness this type of energy is proposed using rotary-translational motion and bi-stability. A sphere rolling magnet is designed to oscillate in a tube with two tethering magnets underneath the rolling path, providing two stable positions for the oscillating magnet. The generated magnetic restoring forces are of periodic form with regard to the sphere magnet location, providing unique nonlinear dynamics and allowing the harvester to operate effectively at ultra-low frequencies (< 1 Hz). Two sets of coils are mounted above the rolling path, and the change of magnetic flux within the coils accomplishes the energy conversion. A theoretical model, including the magnetic forces, the electromagnetic conversion and the occurring bi-stability, is established to understand the electromechanical dynamics and guide the harvester design. End linear springs are designed to maintain the periodic double-well oscillation when the excitation magnitude is high. Parametric studies considering different design factors and operation conditions are conducted to analyze the nonlinear electromechanical dynamics. The harvester illustrates its capabilities in effectively harnessing ultra-low frequency motions over a wide range of low excitation magnitudes.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chen Chen

Traditional aerobics training methods have the problems of lack of auxiliary teaching conditions and low-training efficiency. With the in-depth application of artificial intelligence and computer-aided training methods in the field of aerobics teaching and practice, this paper proposes a local space-time preserving Fisher vector (FV) coding method and monocular motion video automatic scoring technology. Firstly, the gradient direction histogram and optical flow histogram are extracted to describe the motion posture and motion characteristics of the human body in motion video. After normalization and data dimensionality reduction based on the principal component analysis, the human motion feature vector with discrimination ability is obtained. Then, the spatiotemporal pyramid method is used to embed spatiotemporal features in FV coding to improve the ability to identify the correctness and coordination of human behavior. Finally, the linear model of different action classifications is established to determine the action score. In the key frame extraction experiment of the aerobics action video, the ST-FMP model improves the recognition accuracy of uncertain human parts in the flexible hybrid joint human model by about 15 percentage points, and the key frame extraction accuracy reaches 81%, which is better than the traditional algorithm. This algorithm is not only sensitive to human motion characteristics and human posture but also suitable for sports video annotation evaluation, which has a certain reference significance for improving the level of aerobics training.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 828
Author(s):  
Shaobo Zhang ◽  
Jiang Liu ◽  
Hongbo Zhang ◽  
Shuliang Wang

Aiming at solving the NVH problem in vehicles, a novel composite structure is proposed. The new structure uses a hollow-stub phononic-crystal with filled cylinders (HPFC) plate. Any unit in the plate consists of a lead head, a silicon rubber body, an aluminum base as outer column and an opposite arranged inner pole. The dispersion curves are investigated by numerical simulations and the influences of structural parameters are discussed, including traditional hollow radius, thickness, height ratio, and the new proposed filling ratio. Three new arrays are created and their spectrum maps are calculated. In the dispersion simulation results, new branches are observed. The new branches would move towards lower frequency zone and the band gap width enlarges as the filling ratio decreases. The transmission spectrum results show that the new design can realize three different multiplexing arrays for waveguides and also extend the locally resonant sonic band gap. In summary, the proposed HPFC structure could meet the requirement for noise guiding and filtering. Compared to a traditional phononic crystal plate, this new composite structure may be more suitable for noise reduction in rail or road vehicles.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 928
Author(s):  
Ferenc Hegedüs ◽  
Péter Gáspár ◽  
Tamás Bécsi

Nonlinear optimization-based motion planning algorithms have been successfully used for dynamically feasible trajectory planning of road vehicles. However, the main drawback of these methods is their significant computational effort and thus high runtime, which makes real-time application a complex problem. Addressing this field, this paper proposes an algorithm for fast simulation of road vehicle motion based on artificial neural networks that can be used in optimization-based trajectory planners. The neural networks are trained with supervised learning techniques to predict the future state of the vehicle based on its current state and driving inputs. Learning data is provided for a wide variety of randomly generated driving scenarios by simulation of a dynamic vehicle model. The realistic random driving maneuvers are created on the basis of piecewise linear travel velocity and road curvature profiles that are used for the planning of public roads. The trained neural networks are then used in a feedback loop with several variables being calculated by additional numerical integration to provide all the outputs of the original dynamic model. The presented model can be capable of short-term vehicle motion simulation with sufficient precision while having a considerably faster runtime than the original dynamic model.


2017 ◽  
Vol 284 (1864) ◽  
pp. 20171670 ◽  
Author(s):  
Molly C. Womack ◽  
Jakob Christensen-Dalsgaard ◽  
Luis A. Coloma ◽  
Juan C. Chaparro ◽  
Kim L. Hoke

Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing sensitivity varies among earless species, highlighting potential species differences in extratympanic hearing mechanisms. We argue that ancestral bufonids may have sufficient extratympanic hearing and vibrational sensitivity such that earless lineages tolerated the loss of high frequency hearing sensitivity by adopting species-specific behavioural strategies to detect conspecifics, predators and prey.


ACS Nano ◽  
2021 ◽  
Author(s):  
Xinge Guo ◽  
Tianyiyi He ◽  
Zixuan Zhang ◽  
Anxin Luo ◽  
Fei Wang ◽  
...  

Geophysics ◽  
1992 ◽  
Vol 57 (6) ◽  
pp. 854-859 ◽  
Author(s):  
Xiao Ming Tang

A new technique for measuring elastic wave attenuation in the frequency range of 10–150 kHz consists of measuring low‐frequency waveforms using two cylindrical bars of the same material but of different lengths. The attenuation is obtained through two steps. In the first, the waveform measured within the shorter bar is propagated to the length of the longer bar, and the distortion of the waveform due to the dispersion effect of the cylindrical waveguide is compensated. The second step is the inversion for the attenuation or Q of the bar material by minimizing the difference between the waveform propagated from the shorter bar and the waveform measured within the longer bar. The waveform inversion is performed in the time domain, and the waveforms can be appropriately truncated to avoid multiple reflections due to the finite size of the (shorter) sample, allowing attenuation to be measured at long wavelengths or low frequencies. The frequency range in which this technique operates fills the gap between the resonant bar measurement (∼10 kHz) and ultrasonic measurement (∼100–1000 kHz). By using the technique, attenuation values in a PVC (a highly attenuative) material and in Sierra White granite were measured in the frequency range of 40–140 kHz. The obtained attenuation values for the two materials are found to be reliable and consistent.


2019 ◽  
Vol 219 (2) ◽  
pp. 975-994 ◽  
Author(s):  
Gabriel Gribler ◽  
T Dylan Mikesell

SUMMARY Estimating shear wave velocity with depth from Rayleigh-wave dispersion data is limited by the accuracy of fundamental and higher mode identification and characterization. In many cases, the fundamental mode signal propagates exclusively in retrograde motion, while higher modes propagate in prograde motion. It has previously been shown that differences in particle motion can be identified with multicomponent recordings and used to separate prograde from retrograde signals. Here we explore the domain of existence of prograde motion of the fundamental mode, arising from a combination of two conditions: (1) a shallow, high-impedance contrast and (2) a high Poisson ratio material. We present solutions to isolate fundamental and higher mode signals using multicomponent recordings. Previously, a time-domain polarity mute was used with limited success due to the overlap in the time domain of fundamental and higher mode signals at low frequencies. We present several new approaches to overcome this low-frequency obstacle, all of which utilize the different particle motions of retrograde and prograde signals. First, the Hilbert transform is used to phase shift one component by 90° prior to summation or subtraction of the other component. This enhances either retrograde or prograde motion and can increase the mode amplitude. Secondly, we present a new time–frequency domain polarity mute to separate retrograde and prograde signals. We demonstrate these methods with synthetic and field data to highlight the improvements to dispersion images and the resulting dispersion curve extraction.


2007 ◽  
Vol 38 (7) ◽  
pp. 11-17
Author(s):  
Ronald M. Aarts

Conventionally, the ultimate goal in loudspeaker design has been to obtain a flat frequency response over a specified frequency range. This can be achieved by carefully selecting the main loudspeaker parameters such as the enclosure volume, the cone diameter, the moving mass and the very crucial “force factor”. For loudspeakers in small cabinets the results of this design procedure appear to be quite inefficient, especially at low frequencies. This paper describes a new solution to this problem. It consists of the combination of a highly non-linear preprocessing of the audio signal and the use of a so called low-force-factor loudspeaker. This combination yields a strongly increased efficiency, at least over a limited frequency range, at the cost of a somewhat altered sound quality. An analytically tractable optimality criterion has been defined and has been verified by the design of an experimental loudspeaker. This has a much higher efficiency and a higher sensitivity than current low-frequency loudspeakers, while its cabinet can be much smaller.


Sign in / Sign up

Export Citation Format

Share Document