The response of growing pigs to amino acids as influenced by environmental temperature. 2. Lysine

2000 ◽  
Vol 70 (2) ◽  
pp. 299-306 ◽  
Author(s):  
N.S. Ferguson ◽  
G.A. Arnold ◽  
G. Lavers ◽  
R.M. Gous

AbstractTwo experiments were conducted to measure the effects of a range of dietary lysine concentrations and environmental temperatures on the performance of pigs grown from 13 to 25 kg live weight. In both experiments 48 Large White x Landrace entire male pigs were assigned at 13 kg to one of six dietary lysine treatments (13·8 (L1), 11·8 (L2), 9·6 (L3), 7·6 (L4), 5·6 (L5) g/kg and L5 + supplemented lysine (L6)) and one of four temperature treatments (18, 22, 26 and 30°C). Animals were given ad libitum access to food until 25 kg live weight. There were significant differences in the rates of growth between dietary and temperature treatments with the highest gains on L2 (0·597 (s.e. 0·020) kg/day) and at 18°C (0·549 (s.e. 0·018) kg/day). Food intake (FI) increased significantly (P < 0·001) with decreasing lysine content, reached a maximum (L4) and then declined (L5). An increase in the supply of lysine in the diet resulted in significant increases (P < 0·001) in the gain per unit of food (FCE). There was an indication (P < 0·10) that the response in FCE to dietary lysine was dependent on the temperature, with maximum FCE being obtained at 22°C on LI (647 (s.e. 18·5) g gain per kg food). Dietary treatment had a significant effect (P < 0·001) on both the rate of protein (PR) and lipid deposition (LR) irrespective of the temperature. There was a 0·60 reduction in PR and a 1·36 increase in LR in pigs given L5 compared with those given L1. Similar trends occurred in the empty body protein and lipid contents at 25 kg live weight. Both temperature and dietary lysine levels had a significant (P < 0·05) effect on total heat loss (THL). The response in THL was similar to that observed in FI. The efficiency of lysine utilization at 22°C was significantly (P < 0·05) higher than at the remaining temperatures. The mean efficiency for pigs between 13 kg and 25 kg live weight was 0·64 (s.e. 0·05). In general, growth and food intake responses to dietary lysine level were independent of environmental temperature.

2000 ◽  
Vol 70 (2) ◽  
pp. 287-297 ◽  
Author(s):  
N.S. Ferguson ◽  
G.A. Arnold ◽  
G. Lavers ◽  
R.M. Gous

AbstractTwo similar experiments (1 and 2) were conducted to measure the effects of a range of dietary threonine concentrations and environmental temperatures on the performance of pigs grown from 13 to 25 kg live weight. In both experiments 48 Large White x Landrace entire male pigs were assigned at 13 kg to one of six dietary threonine treatments (8·9 (T1), 7·6 (T2), 6·2 (T3), 4·9 (T4), 3·6 (T5) g/kg and T5 + supplemented threonine (T6)) and one of four temperature treatments (18, 22, 26 and 30°C). Animals were given ad libitum access to food until 25 kg live weight. There were significant interactions (P < 0·05) between temperature and threonine content on the rate of growth (ADG) with the highest gains on T1 and at 22°C. Similarly the response in food intake (FI) to dietary threonine was significantly (P < 0·01) modified by the ambient temperature. An increase in the supply of threonine in the diet resulted in significant increases (P < 0·001) in the gain per unit of food (FCE). A similar response to temperature occurred with the highest FCE recorded at 26°C and the lowest at 18°C. There was a 0·20 proportional reduction in body protein content at 25 kg live weight in pigs given T5 compared with those given T1 and similarly, excluding T6 because threonine may not have been the most limiting amino acid, the fat content was 1·37 higher for pigs on T5 versus T1, which had the lowest fat content. Similar trends occurred in protein and lipid growth rates with maximum protein deposition recorded on T1 (86 (s.e. 3·5) g/day) and maximum lipid deposition on T5 (108 (s.e. 5·8) g/day), over all temperatures. The response in total heat loss was similar to that observed in FI with the effect of decreasing threonine content being dependent on the environmental temperature. Linear regression of daily empty body threonine accretion on daily digestible threonine intake showed an average efficiency of threonine utilization for pigs between 12 kg and 25 kg live weight of 0·59 (s.e. 0·03). There were no differences in efficiency between temperatures. In conclusion, decreasing the threonine concentration below the requirement of the animal ‘resulted in a significant decrease in ADG, reduced FCE and fatter animals. Pigs given a diet deficient in threonine will attempt to maintain threonine intake as the concentration declines by increasing food intake but this compensation is dependent on the environmental temperature. Pigs are able to compensate better for a deficiency in threonine at 18°C and 22°C than at higher temperatures due to the animals being able to dissipate more heat at the lower temperatures.


2002 ◽  
Vol 74 (1) ◽  
pp. 103-110 ◽  
Author(s):  
N.S. Ferguson ◽  
R.M. Gous

AbstractAn experiment was performed to measure the response of young pigs to dietary tryptophan (TRP) concentrations and environmental temperatures. Seventy-two entire male Large White ✕ Landrace pigs were assigned to one of six dietary treatments (2·90 (T1), 2·46 (T2), 2·01 (T3), 1·57 (T4), 1·12 (T5) g/kg and T5 + supplemented TRP (T6)) and one of three temperature treatments (20, 25 and 30°C) at a mean starting live weight of 14·38 (s.e. 0·201)kg. Animals were given ad libitum access to food until a final weight of 26·42 (s.e. 0·479) kg. There were no significant interactions between temperature and dietary TRP on any production variable. There was a significant (P < 0·05) quadratic improvement in the rate of live-weight growth (ADG) as the concentration of dietary TRP increased and as the temperature decreased. However, the response to increasing dietary TRP was independent of the environmental temperature. Maximum ADG was attained on T2 (0·498 (s.e. 0·023) kg/day) and at 20ºC (0·412 (s.e. 0·024) kg/day). Final live weight was a significant (P < 0·001) covariate for ADG and food intake (FI) responses. With TRP as a precursor for serotonin, a neurotransmitter that regulates appetite, it was anticipated that food intake would be affected with decreasing dietary TRP levels. However, there was no response in daily food intake to decreasing TRP concentration. This lack of response in appetite to dietary TRP may have been a result of an increasing TRP to large neutral amino acid ratio, which is known to correlate with an increase in serotonin synthesis. Total heat loss followed a similar response to FI. The gain per unit of food consumed was significantly (P < 0·001) reduced as the TRP content of the diet was decreased. The most efficient treatments were T1 (506 (s.e. 1·90) g gain per kg food) and T2 (495 (s.e. 23·2) g gain per kg food) while the worst was T5 (237 (s.e. 22·3) g gain per kg food). There were significant quadratic responses to dietary TRP in protein content of the empty body (P < 0·05) and the rate of protein retention (PR) (P < 001) but only PR was affected by temperature (P < 001). Both temperature (P < 0·05) and dietary TRP (P < 0·001) had a significant effect on the lipid content of the body but only temperature affected the rate of lipid retention, with a significantly (P < 0·001) lower rate at 30 oC. The efficiency of TRP utilization improved with increasing temperature. It was lowest at 20ºC (0·60 g TRP per kg protein) and highest at 30ºC (0·86 g/kg), while the mean efficiency for pigs between 14 and 26 kg live weight, at thermoneutrality (25°C), was close to 0·71 g/kg.


2001 ◽  
Vol 73 (3) ◽  
pp. 459-469 ◽  
Author(s):  
N.S. Ferguson ◽  
G. Lavers ◽  
R.M. Gous

AbstractAn experiment was conducted to measure the effects of stocking density (increased number of pigs per pen) on lysine requirements of pigs grown from 25 to 60 kg live weight. Two hundred and sixty-four female Large White ✕ Landrace pigs were assigned at 25 kg to one of four dietary lysine treatments (13·3 (L1); 11·4 (L2); 9·5 (L3) and 7·6 (L4) g/kg) and either seven or 13 pigs per pen (or 1 0 and 0·5 m2 per pig, respectively). An additional treatment of one pig per pen (20 m2 per pig) was included to compare the responses of solitary- versus group-penned pigs. Animals were given ad libitum access to dietary treatments from a mean pen starting weight of 261 (s.e. 0·35) kg to a mean pen finishing weight of 63·4 (s.e. 0·61) kg live weight. There were no significant interactions between dietary lysine content and floor space per pig on food intake (FI), average daily growth rate (ADG), the amount of food per unit of gain (FCR) and the rate of protein retention (PR). Significant interactions were evident for body composition and the rate of lipid retention (LR). Over the weight range 25 to 40 kg there were significant differences in FI (P < 0·05) and FCR (P < 0·001) between dietary lysine treatments but most of these differences had disappeared over the 40 to 60 kg live weight. Individually penned animals had significantly higher (P < 0·05) FI and ADG than group-penned animals. However, there were no differences between seven and 13 pig per pen treatments. Stocking density had no effect on LR or body protein content but did cause a significant reduction in PR (P < 0·001) and an increase in body lipid content (P < 0·05) as the number of pigs per pen increased from seven to 13. Lysine requirements (expressed in g/day) therefore could be seen to be reduced with increasing stocking density. However, as lysine intake was reduced in group-penned animals, the reduced daily requirement does not necessarily warrant a reduction in the lysine content of the food. Feeding according to the requirements for maximum PR will still produce the best carcass and growth performance irrespective of the group size. The improvement in PR associated with higher dietary nutrient levels did not completely offset the adverse physiological effects of higher stocking density but may partly counteract the effect of reduced lysine intake. However, there were indications that feeding crowded pigs a lower dietary lysine concentration may not further reduce the already diminished protein (lysine) growth rate. An additional experiment was performed to test whether the number of feeder bins may have constrained food intake and therefore growth in group-penned animals. The results of this experiment showed that the number of bins had no significant effect on FI, ADG and FCR in group-penned pigs, and therefore a single feeder bin was not considered a constraining factor in pigs housed with limited floor space.


1997 ◽  
Vol 64 (2) ◽  
pp. 365-378 ◽  
Author(s):  
N. S. Ferguson ◽  
R. M. Gous

AbstractNinety-six entire male Large White XLandrace pigs were assigned at 13 kg to one of six dietary crude protein (P) treatments (230 g/kg (P1), 201 g/kg (P2), 178 g/kg (P3), 151 g/kg (P4), 125 g/kg (P5), 93 g/kg (P6)) and one of four temperatures (T) (no. = 4) (18°C, 22°C, 26°C, 30°C), and were given food ad libitum until slaughter weight of 30 kg. At all temperatures gut fill was a constant proportion of food intake (Fl) (1·56) but this ratio varied with different protein concentrations. Food intake increased with decreasing temperature and with decreasing protein content to a maximum rate on P4 (1·347 kg) whereafter FI declined. There was a linear decrease in average daily gain (ADG) with decreasing protein content while temperature had a significant curvilinear effect on ADG and food conversion ratio (FCR) with maximum ADG (0·680 kg/day) at 26°C. Body protein content decreased as the dietary protein concentration declined below P3 and there was a corresponding increase in lipid content. Temperature had no effect on body protein content but had a significant effect on lipid content. Similar trends occurred in the rate of protein (PR) and lipid (LR) retention with maximum PR (117·1 g/day) attained on PI, P2 and P3. Protein and temperature had a significant effect on total heat loss (THL). Maximum THL occurred in the protein treatment that resulted in pigs consuming maximum FI. The efficiency of protein utilization increased with increasing temperature but the response was dependent on the protein supply. It is concluded that on low protein diets pigs increase their Fl to maintain potential protein growth until a point is reached where the animal can no longer compensate and FI will decline. The extent of the compensation will depend on the amount of heat the animal can lose which in turn is dependent on the environmental temperature.


1985 ◽  
Vol 40 (2) ◽  
pp. 331-343 ◽  
Author(s):  
E. S. Batterham ◽  
L. R. Giles ◽  
E. Belinda Dettmann

ABSTRACTThe responses of growing pigs to dietary lysine concentration, as influenced by food intake, sex (intact males and females) and live weight were investigated in a 4 x 2 x 2 x 2 factorial experiment involving 128 Large White pigs. Lysine concentrations were 7, 8, 9 and 10 g/kg air-dry food. The basal wheat-soya bean meal diet (14·0 MJ digestible energy per kg) was offered either ad libitum or on a restricted feeding scale to pigs from 20 to 85 kg live weight. During the 50 to 85 kg growth phase, the effects of proportionately reducing the lysine concentrations by 0·2 were investigated. Performance response was assessed in two ways; by analysis of variance for the 20 to 50, 50 to 85 and 20 to 85 kg phases, and by response surface analyses of data from successive 10-kg weight intervals.An initial analysis of variance indicated that food intake (of pigs fed ad libitum), daily gain and food conversion ratio varied with lysine concentration, but that the responses differed with food intake, sex and phase of growth.Analysis of the response surfaces delineated by lysine level and phase of growth indicated that for males and females with restricted food and males fed ad libitum, maximum daily gain was produced by feeding at least 10 g lysine per kg, declining to about 8 g/kg at 80 kg. With females fed ad libitum, maximum daily gain was obtained by feeding 9·9 g lysine per kg at 20 kg, declining to less than 5·6 g/kg at 75 kg.Carcass characteristics were largely unaffected by lysine concentration.


2000 ◽  
Vol 70 (3) ◽  
pp. 457-469 ◽  
Author(s):  
H. L. I. Bornett ◽  
C. A. Morgan ◽  
A. B. Lawrence ◽  
J. Mann

AbstractGroup-housed pigs may be prevented from expressing their desired feeding pattern by more dominant individuals in the group. Indeed, when compared with individually housed pigs, group housed pigs eat less frequent, but larger meals. Therefore, it would be advantageous for pigs to have flexible feeding patterns in order to decrease the impact of group housing. The aim of this study was to assess the flexibility of feeding patterns by restricting the time of access to food of pigs previously given food ad libitum and then returning them to 24-h access. Thirty-two Large White x Landrace pigs were used in an experiment of two blocks (16 pigs per block) each comprising three, 2-week periods. In each block; during period 1, all pigs were allowed 24-h access to food after which, in period 2, eight of the pigs had access to the feeder restricted between 11:00 and 13:00 h of each day. The remaining eight pigs continued on 24-h access to food and acted as controls. In period 3, all pigs were again returned to 24-h access to food. Daily feeding pattern and food intake were recorded throughout. Behavioural observations in the form of scan samples were made and pigs were weighed twice a week. In period 2 the restricted pigs had fewer visits to the feeder per day, 34·0 v. 70·1 (P < 0·001); of a longer duration, 98·3 v. 64·5 s (P < 0·01); with a higher food intake per visit, 64·9 v. 33·3 g (P < 0·001) than the control pigs. Daily food intake and live-weight gain were lower (P < 0·001) for the restricted pigs in period 2 than for the control pigs. Restricted pigs spent more time rooting (P < 0·05), and less time sleeping (P < 0·05) than the control pigs in period 2. In addition, there was a trend for pigs to spend more time alert in the observation session prior to access to food in the second period when they were restricted and they made attempts to gain access to the feeders in this session. An indication of flexibility was gained by comparing feeding behaviour and time budgets between periods 1 and 3. The pigs that experienced a period of restricted feeding either resumed their previous behaviour or showed the same trend as the controls. In periods 1 and 3 daily feeder visits were 66·2 and 68·1 for control pigs, and 65·6 and 67·1 for restricted pigs. Mean durations of visits were 79·3 and 47·5 s, and 74·4 and 61·7 s respectively. It was concluded that feeding behaviour was flexible and time budgets were resilient across periods.


1978 ◽  
Vol 90 (1) ◽  
pp. 69-76 ◽  
Author(s):  
D. Wyllie ◽  
J. B. Owen

SUMMARYForty Large White × Wessex pigs were fed from 7 to 27 kg live weight, on diets containing either 28 or 14% crude protein. From 27 to 113 kg live weight the pigs were fed a common diet ad libitum. Pigs from each treatment were killed at 27, 54, 82 and 113 kg live weight and the chemical composition was determined. From 7 to 27 kg and from 27 to 113 kg live weight, daily gain, food intake and food conversion efficiency were similar for the two treatments.At 27 kg, pigs on the lower protein diet were fatter and contained less lean tissue. Between 27 and 54 kg live weight the pigs previously on the higher protein diet deposited a much greater amount of fat than the pigs on the lower protein diet, so that by 54 kg the pigs initially on the lower protein contained less fat. At 82 and 113 kg live weight the pigs given the lower protein diet initially also tended to contain less fat. These findings are discussed with particular reference to the voluntary energy intake of growing pigs.


1967 ◽  
Vol 9 (4) ◽  
pp. 435-452 ◽  
Author(s):  
C. W. Holmes ◽  
L. E. Mount

Continuous measurements of heat loss throughout the 24 hours have been made on groups of pigs living in a large direct calorimeter equipped as a pig pen. Five experiments, each lasting 24 days, were carried out on groups of six pigs each weighing about 20 kg, and these were repeated when body weight was 60 kg on groups of three pigs, chosen from the original six in each case. Each group was exposed initially to an environmental temperature of 20°C for 10 days, followed by either 9°C (two groups at each weight), 30°C (two groups at each weight), or a continuation of 20°C (one group at each weight). In another experiment lasting 66 days a group of four pigs was exposed to 12 and 20°C at two levels of air movement.Heat loss from the groups showed a marked 24-hr cycle, with a maximum n i the afternoon and a minimum in the early morning. The mean amplitude of the cycle at 20°C was 20% of the mean value; this proportion increased at 9 and 12°C.Heat loss was approximately proportional to (body weight)1·0 over the weight range 17·34 kg, and to (body weight)0·8 over the weight range 35·54 kg, when food intake increased in proportion to (body weight)1·0. Over the weight range 55·67 kg, when food intake was constant at 1·83 kg/day per pig, heat loss was proportional to (body weight)0·4. In both 20 and 60-kg pigs, heat losses showed little difference between 20 and 30°C, but were increased at 9°C.Evaporative loss from the pen, as a proportion of total heat loss, was approximately 21% at 9°C, 29% at 20°C, and 61% at 30°C. Voluntary water intake exhibited a marked 24-hr cycle similar in timing to the heat loss cycle.There was no lasting effect on heat loss associated with raising the mean air movement rate in the pen from 10 to 26 cm/sec.


1972 ◽  
Vol 14 (1) ◽  
pp. 47-55 ◽  
Author(s):  
G. A. Lodge ◽  
M. E. Cundy ◽  
R. Cooke ◽  
D. Lewis

SUMMARYForty-eight gilts by Landrace sires on Large White × Landrace females were randomly allocated to eight pens and within pens to six treatment groups involving three diets and two levels of feeding from 23 to 59 kg live weight. All diets were formulated to have approximately the same ratio of digestible energy to crude protein (160 kcal DE/unit % CP) but different energy and protein concentrations: (A) 3500 kcal/kg DE and 21 % CP, (B) 3150 kcal/kg DE and 19% CP, and (C) 2800 kcal/kg DE and 17% CP. Amino acid balance was maintained relatively constant with synthetic lysine, methionine and tryptophan. The levels of feeding were such that the lower level of diet A allowed an intake of energy and protein similar to the higher level of diet B, and the lower level of B was similar to the higher level of C.On the lower level of feeding, growth rate, efficiency of feed conversion and carcass fat content increased linearly with each increment in nutrient concentration; on the higher level of feeding growth rate and EFC increased from diet C to B but not from B to A, whereas carcass fat content increased linearly with diet from the lowest to the highest concentration. There was a non-significant tendency for the higher density diets at a similar level of nutrient intake to give better EFC and fatter carcasses than the lower density diets.


1989 ◽  
Vol 48 (1) ◽  
pp. 203-212 ◽  
Author(s):  
C. T. Whittemore ◽  
H. Yang

ABSTRACTThe physical and chemical composition of sows was determined at first mating (no. = 6), weaning the first litter (12) and 14 days after weaning the fourth litter (24). The sows were from 108 Large White/Landrace Fl hybrid gilts allocated in a factorial arrangement according to two levels of subcutaneous fatness at parturition (12 v. 22 mm P2), two levels of lactation feeding (3 v. 7 kg) and two sizes of sucking litter (six v. 10). Treatments significantly influenced the composition of dissected carcass fat and chemical lipid, but not composition of dissected lean and chemical protein. The final body protein mass of well fed sows at the termination of parity 4 was 41 kg, and the total content of gross energy (GE) in excess of 3000 MJ, with an average of 12·4 MJ GE per kg live weight; equivalent values for the less well fed sows were 33 kg and 9·4 MJ GE per kg live weight respectively. The weights of chemical lipid and protein could be predicted from the equations: lipid (kg) = -20·4 (s.e. 4·5) + 0·21 (s.e. 0·02) live weight + 1·5 (s.e. 0·2) P2; protein (kg) = -2·3 (s.e. 1·6) + 0·19 (s.e. 0·01) live weight - 0·22 (s.e. 0·07) P2. On average, sows lost 9 kg lipid and 3 kg protein in the course of the 28-day lactation; these being proportionately about 0·16 and 0·37 of the live-weight losses respectively. Maternal energy requirement for maintenance was estimated as 0·50 MJ digestible energy (DE) per kg M0·75, while the efficiency of use of DE for energy retention was 0·28.


Sign in / Sign up

Export Citation Format

Share Document