Characterization of Waxy Material of the Giant Whitefly, Aleurodicus Dugesii, Using Scanning Electron Microscopy (SEM) and Capillary Gas Chromatography-Mass Spectrometry (CGC-MS)

1997 ◽  
Vol 3 (S2) ◽  
pp. 121-122
Author(s):  
T. P. Freeman ◽  
D. R. Nelson ◽  
J. S. Buckner ◽  
R. L. Ruud ◽  
C. L. Fatland

The giant whitefly is a pest, particularly of Hibiscus and sometimes avocados, in southern California. The insect is unique in that the nymphal stages produce copious quantities of waxy material differing in structure and chemical composition. Adults produce a waxy material (waxy particles) which covers them and surrounding surfaces, and the female also produces a waxy material with which she forms a circular trail of wax strands on the abaxial leaf surface.Waxy particles produced by male and female adults consisted of long-chain aldehydes and alcohols, largely 32 carbons in chain length. As waxy ribbons extruded from anterior abdominal wax plates, they are periodically broken off by the tibia and the resulting particles coat adults, nymphs and surrounding surfaces. The female has a second set of wax plates posteriorly on her abdomen which produce waxy strands. As her abdomen drags along the abaxial leaf surface during oviposition these strands break off forming a waxy trail camouflaging the eggs.The nymphs produce several types of waxy material. Two types are produced at the same time from 10 pores on the dorsal surface; waxy material is extruded as a filament on which a second waxy material curls off as extrusion occurs.

2012 ◽  
Vol 71 (1) ◽  
pp. 95-113 ◽  
Author(s):  
Parisa Panahi ◽  
Ziba Jamzad ◽  
Mohammad Pourmajidian ◽  
Asghar Fallah ◽  
Mehdi Pourhashemi

Foliar epidermis morphology inQuercus(subgenusQuercus, sectionQuercus) in IranThe foliar morphology of trichomes, epicuticular waxes and stomata inQuercus cedrorum, Q. infectoriasubsp.boissieri, Q. komarovii, Q. longipes, Q. macranthera, Q. petraeasubsp.ibericaandQ. robursubsp.pedunculiflorawere studied by scanning electron microscopy. The trichomes are mainly present on abaxial leaf surface in most species, but rarely they appear on adaxial surface. Five trichome types are identified as simple uniseriate, bulbous, solitary, fasciculate and stellate. The stomata of all studied species are of the anomocytic type, raised on the epidermis. The stomata rim may or may not be covered with epicuticular. The epicuticular waxes are mostly of the crystalloid type but smooth layer wax is observed inQ. robursubsp.pedunculiflora.Statistical analysis revealed foliar micromorphological features as been diagnostic characters inQuercus.


2004 ◽  
Vol 852 ◽  
Author(s):  
Ken Sutherland ◽  
Beth A. Price ◽  
Irma Passeri ◽  
Mark Tucker

ABSTRACTIn studies of the materials of old master paintings, the characterization of thin and degraded layers often presents unusual challenges for routinely used methods of analysis. This paper discusses analyses performed as part of a study of the materials and techniques of Pontormo's “Portrait of Alessandro de’ Medici” (1534–5) carried out during a recent cleaning and restoration of the painting. Pontormo built up the portrait using a complex sequence of preparation, drawing and paint layers, the analysis of which was complicated further in some areas by the presence of degraded materials on the paint surface. The materials used for the various stages of preparation and painting were characterized by gas chromatography/mass spectrometry (GCMS), Fourier transform infrared microspectroscopy (FTIR) and scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The focus of this paper will be the particular approaches taken to the characterization of the preparation layers and degraded surface materials.


Author(s):  
P. Evers ◽  
C. Schutte ◽  
C. D. Dettman

S.rodhaini (Brumpt 1931) is a parasite of East African rodents which may possibly hybridize with the human schistosome S. mansoni. The adult male at maturity measures approximately 3mm long and possesses both oral and ventral suckers and a marked gynaecophoric canal. The oral sucker is surrounded by a ring of sensory receptors with a large number of inwardly-pointing spines set into deep sockets occupying the bulk of the ventral surface of the sucker. Numbers of scattered sensory receptors are found on both dorsal and ventral surfaces of the head (Fig. 1) together with two conspicuous rows of receptors situated symmetrically on each side of the midline. One row extends along the dorsal surface of the head midway between the dorsal midline and the lateral margin.


Author(s):  
G. Meneghesso ◽  
E. Zanoni ◽  
P. Colombo ◽  
M. Brambilla ◽  
R. Annunziata ◽  
...  

Abstract In this work, we present new results concerning electrostatic discharge (ESD) robustness of 0.6 μm CMOS structures. Devices have been tested according to both HBM and socketed CDM (sCDM) ESD test procedures. Test structures have been submitted to a complete characterization consisting in: 1) measurement of the tum-on time of the protection structures submitted to pulses with very fast rise times; 2) ESD stress test with the HBM and sCDM models; 3) failure analysis based on emission microscopy (EMMI) and Scanning Electron Microscopy (SEM).


2018 ◽  
Vol 3 (1) ◽  
pp. 12 ◽  
Author(s):  
Zaimahwati Zaimahwati ◽  
Yuniati Yuniati ◽  
Ramzi Jalal ◽  
Syahman Zhafiri ◽  
Yuli Yetri

<p>Pada penelitian ini telah dilakukan isolasi dan karakterisasi bentonit alam menjadi nanopartikel montmorillonit. Bentonit alam yang digunakan diambil dari desa Blangdalam, Kecamatan Nisam Kabupaten Aceh Utara.  Proses isolasi meliputi proses pelarutan dengan aquades, ultrasonic dan proses sedimentasi. Untuk mengetahui karakterisasi montmorillonit dilakukan uji FT-IR, X-RD dan uji morfologi permukaan dengan Scanning Electron Microscopy (SEM). Partikel size analyzer untuk menganalisis dan menentukan ukuran nanopartikel dari isolasi bentonit alam. Dari hasil penelitian didapat ukuran nanopartikel montmorillonit hasil isolasi dari bentonit alam diperoleh berdiameter rata-rata 82,15 nm.</p><p><em>In this research we have isolated and characterized natural bentonite into montmorillonite nanoparticles. Natural bentonite used was taken from Blangdalam village, Nisam sub-district, North Aceh district. The isolation process includes dissolving process with aquades, ultrasonic and sedimentation processes.  The characterization of montmorillonite, FT-IR, X-RD and surface morphology test by Scanning Electron Microscopy (SEM). Particle size analyzer to analyze and determine the size of nanoparticles from natural bentonite insulation. From the research results obtained the size of montmorillonite nanoparticles isolated from natural bentonite obtained an average diameter of 82.15 nm.</em></p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 446
Author(s):  
Ioannis Spanos ◽  
Zacharias Vangelatos ◽  
Costas Grigoropoulos ◽  
Maria Farsari

The need for control of the elastic properties of architected materials has been accentuated due to the advances in modelling and characterization. Among the plethora of unconventional mechanical responses, controlled anisotropy and auxeticity have been promulgated as a new avenue in bioengineering applications. This paper aims to delineate the mechanical performance of characteristic auxetic and anisotropic designs fabricated by multiphoton lithography. Through finite element analysis the distinct responses of representative topologies are conveyed. In addition, nanoindentation experiments observed in-situ through scanning electron microscopy enable the validation of the modeling and the observation of the anisotropic or auxetic phenomena. Our results herald how these categories of architected materials can be investigated at the microscale.


Sign in / Sign up

Export Citation Format

Share Document