scholarly journals Three-Dimensional X-Ray Imaging and Analysis of Fungi on and in Wood

2009 ◽  
Vol 15 (5) ◽  
pp. 395-402 ◽  
Author(s):  
Jan Van den Bulcke ◽  
Matthieu Boone ◽  
Joris Van Acker ◽  
Luc Van Hoorebeke

AbstractAs wood is prone to fungal degradation, fundamental research is necessary to increase our knowledge aiming at product improvement. Several imaging modalities are capable of visualizing fungi, but the X-ray equipment presented in this article can envisage fungal mycelium in wood nondestructively in three dimensions with submicron resolution. Four types of wood subjected to the action of the white rot fungusCoriolus versicolor(Linnaeus) Quélet (CTB 863 A) were scanned using an X-ray-based approach. Comparison of wood volumes before and after fungal exposure, segmented manually or semiautomatically, showed the presence of the fungal mass on and in the wood samples and therefore demonstrated the usefulness of computed X-ray tomography for mycological and wood research. Further improvements to the experimental setup are necessary to resolve individual hyphae and enhance segmentation.

2004 ◽  
Vol 37 (5) ◽  
pp. 757-765 ◽  
Author(s):  
L. E. Levine ◽  
G. G. Long

A new transmission X-ray imaging technique using ultra-small-angle X-ray scattering (USAXS) as a contrast mechanism is described. USAXS imaging can sometimes provide contrast in cases where radiography and phase-contrast imaging are unsuccessful. Images produced at different scattering vectors highlight different microstructural features within the same sample volume. When used in conjunction with USAXS scans, USAXS imaging provides substantial quantitative and qualitative three-dimensional information on the sizes, shapes and spatial arrangements of the scattering objects. The imaging technique is demonstrated on metal and biological samples.


Langmuir ◽  
2020 ◽  
Vol 36 (37) ◽  
pp. 10923-10932
Author(s):  
Nanako Sakata ◽  
Yoshihiro Takeda ◽  
Masaru Kotera ◽  
Yasuhito Suzuki ◽  
Akikazu Matsumoto

2018 ◽  
Vol 2 (4) ◽  
pp. 24 ◽  
Author(s):  
Anton Davydok ◽  
Thomas Cornelius ◽  
Zhe Ren ◽  
Cedric Leclere ◽  
Gilbert Chahine ◽  
...  

The three-point bending behavior of a single Au nanowire deformed by an atomic force microscope was monitored by coherent X-ray diffraction using a sub-micrometer sized hard X-ray beam. Three-dimensional reciprocal-space maps were recorded before and after deformation by standard rocking curves and were measured by scanning the energy of the incident X-ray beam during deformation at different loading stages. The mechanical behavior of the nanowire was visualized in reciprocal space and a complex deformation mechanism is described. In addition to the expected bending of the nanowire, torsion was detected. Bending and torsion angles were quantified from the high-resolution diffraction data.


2016 ◽  
Vol 72 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Aike Ruhlandt ◽  
Tim Salditt

This paper presents an extension of phase retrieval algorithms for near-field X-ray (propagation) imaging to three dimensions, enhancing the quality of the reconstruction by exploiting previously unused three-dimensional consistency constraints. The approach is based on a novel three-dimensional propagator and is derived for the case of optically weak objects. It can be easily implemented in current phase retrieval architectures, is computationally efficient and reduces the need for restrictive prior assumptions, resulting in superior reconstruction quality.


MRS Bulletin ◽  
1988 ◽  
Vol 13 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J.H. Kinney ◽  
Q.C. Johnson ◽  
U. Bonse ◽  
M.C. Nichols ◽  
R.A. Saroyan ◽  
...  

Imaging is the cornerstone of materials characterization. Until the middle of the present century, visible light imaging provided much of the information about materials. Though visible light imaging still plays an extremely important role in characterization, relatively low spatial resolution and lack of chemical sensitivity and specificity limit its usefulness.The discovery of x-rays and electrons led to a major advance in imaging technology. X-ray diffraction and electron microscopy allowed us to characterize the atomic structure of materials. Many materials vital to our high technology economy and defense owe their existence to the understanding of materials structure brought about with these high-resolution methods.Electron microscopy is an essential tool for materials characterization. Unfortunately, electron imaging is always destructive due to the sample preparation that must be done prior to imaging. Furthermore, electron microscopy only provides information about the surface of a sample. Three dimensional information, of great interest in characterizing many new materials, can be obtained only by time consuming sectioning of an object.The development of intense synchrotron light sources in addition to the improvements in solid state imaging technology is revolutionizing materials characterization. High resolution x-ray imaging is a potentially valuable tool for materials characterization. The large depth of x-ray penetration, as well as the sensitivity of absorption crosssections to atomic chemistry, allows x-ray imaging to characterize the chemistry of internal structures in macroscopic objects with little sample preparation. X-ray imaging complements other imaging modalities, such as electron microscopy, in that it can be performed nondestructively on metals and insulators alike.


2011 ◽  
Vol 44 (3) ◽  
pp. 526-531 ◽  
Author(s):  
David Allen ◽  
Jochen Wittge ◽  
Jennifer Stopford ◽  
Andreas Danilewsky ◽  
Patrick McNally

In the semiconductor industry, wafer handling introduces micro-cracks at the wafer edge and the causal relationship of these cracks to wafer breakage is a difficult task. By way of understanding the wafer breakage process, a series of nano-indents were introduced both into 20 × 20 mm (100) wafer pieces and into whole wafers as a means of introducing controlled strain. Visualization of the three-dimensional structure of crystal defects has been demonstrated. The silicon samples were then treated by various thermal anneal processes to initiate the formation of dislocation loops around the indents. This article reports the three-dimensional X-ray diffraction imaging and visualization of the structure of these dislocations. A series of X-ray section topographs of both the indents and the dislocation loops were taken at the ANKA Synchrotron, Karlsruhe, Germany. The topographs were recorded on a CCD system combined with a high-resolution scintillator crystal and were measured by repeated cycles of exposure and sample translation along a direction perpendicular to the beam. The resulting images were then rendered into three dimensions utilizing open-source three-dimensional medical tomography algorithms that show the dislocation loops formed. Furthermore this technique allows for the production of a video (avi) file showing the rotation of the rendered topographs around any defined axis. The software also has the capability of splitting the image along a segmentation line and viewing the internal structure of the strain fields.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Jin EUN ◽  
Hae-Kwan Park

Introduction: The difficulty neurointernvetionists face in keeping “Time is brain” in the middle of the COVID-19 pandemic are inevitable. Our health system began shutting down entire hospital for two weeks after a transport agent was diagnosed with COVID-19. It took an additional two weeks to establish the process of emergency treatment. We intend to introduce our protocols and report on their progress so far. Post-COVID-19 Protocol (Figure 1) Methods: A total of 52 patients underwent mechanical thrombectomy at Eunpyeong St. Mary’s Hospital before the Covid-19 outbreak. For 18 patients who underwent mechanical thrombectomy through a new process after COVID-19, door-to-image time, door-to-puncture time, and TICI grade were compared. Results: For the treatment of all patients, portable chest x-ray imaging was performed, but the door-to-initial-brain-image time (min) was 15.5 vs. 15 (before COVID-19 vs. after COVID-19) (p=0.265). Door-to-needle-time (min) showed a delay of 9 minutes, from 144.5 to 153.5, but it was not statistically significant (p=0.299). Up to 95.2% of patients before COVID-19 achieved TICI grade 2b or higher, and 100% of patients after COVID-19 have achieved TICI grade 2b or 3. (Table 1) Conclusions: Overall, there was a slight increase in the door-to-needle time, but clear protocols and guidelines for management and collaboration with the clinical workforce have been able to reduce delays and ensure timely and adequate management. When referring to the protocol implemented while preparing for infectious diseases, it will be a reference not only for COVID-19, but also for other diseases that may occur in the future.


Author(s):  
David Blow

In Chapter 4 many two-dimensional examples were shown, in which a diffraction pattern represents the Fourier transform of the scattering object. When a diffracting object is three-dimensional, a new effect arises. In diffraction by a repetitive object, rays are scattered in many directions. Each unit of the lattice scatters, but a diffracted beam arises only if the scattered rays from each unit are all in phase. Otherwise the scattering from one unit is cancelled out by another. In two dimensions, there is always a direction where the scattered rays are in phase for any order of diffraction (just as shown for a one-dimensional scatterer in Fig. 4.1). In three dimensions, it is only possible for all the points of a lattice to scatter in phase if the crystal is correctly oriented in the incident beam. The amplitudes and phases of all the scattered beams from a three-dimensional crystal still provide the Fourier transform of the three-dimensional structure. But when a crystal is at a particular angular orientation to the X-ray beam, the scattering of a monochromatic beam provides only a tiny sample of the total Fourier transform of its structure. In the next section, we are going to find what is needed to allow a diffracted beam to be generated. We shall follow a treatment invented by Lawrence Bragg in 1913. Max von Laue, who discovered X-ray diffraction in 1912, used a different scheme of analysis; and Paul Ewald introduced a new way of looking at it in 1921. These three methods are referred to as the Laue equations, Bragg’s law and the Ewald construction, and they give identical results. All three are described in many crystallographic text books. Bragg’s method is straightforward, understandable, and suffices for present needs. I had heard J.J. Thomson lecture about…X-rays as very short pulses of radiation. I worked out that such pulses…should be reflected at any angle of incidence by the sheets of atoms in the crystal as if these sheets were mirrors.…It remained to explain why certain of the atomic mirrors in the zinc blende [ZnS] crystal reflected more powerfully than others.


Sign in / Sign up

Export Citation Format

Share Document