scholarly journals Ionic Liquids as Floatation Media for Cryo-Ultramicrotomy of Soft Polymeric Materials

2013 ◽  
Vol 19 (6) ◽  
pp. 1554-1557
Author(s):  
Paul Kim ◽  
Emeric David ◽  
Louis Raboin ◽  
Alexander E. Ribbe ◽  
Thomas P. Russell ◽  
...  

AbstractIonic liquids (ILs) and their mixtures with low molecular solvents present ideal properties for use as flotation liquids in cryo-ultramicrotomy. With control of Tg and η by co-solvent addition, flat, ultra-thin sections are reliably floated onto transmission electron microscopy grids even at temperatures as low as −100°C. Even more, the liquids and their mixtures are stable in the microtome trough for several hours because of low vapor pressure and low solidification temperature. Compared to established flotation media for soft polymer systems, the time and skill needed for cryo-ultramicrotomy are significantly reduced. Although just a handful of ILs are discussed and a good general choice identified, if different liquid characteristics are needed for a particular sample, thousands of additional ILs will perform similarly, giving this new approach enormous flexibility.

Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. Cadoz ◽  
J. Castaing ◽  
J. Philibert

Plastic deformation of alumina has been much studied; basal slip occurs and dislocation structures have been investigated by transmission electron microscopy (T.E.M.) (1). Non basal slip has been observed (2); the prismatic glide system <1010> {1210} has been obtained by compression tests between 1400°C and 1800°C (3). Dislocations with <0110> burgers vector were identified using a 100 kV microscope(4).We describe the dislocation structures after prismatic slip, using high voltage T.E.M. which gives much information.Compression tests were performed at constant strainrate (∿10-4s-1); the maximum deformation reached was 0.03. Thin sections were cut from specimens deformed at 1450°C, either parallel to the glide plane or perpendicular to the glide direction. After mechanical thinning, foils were produced by ion bombardment. Details on experimental techniques can be obtained through reference (3).


Author(s):  
Robert M. Fisher

By 1940, a half dozen or so commercial or home-built transmission electron microscopes were in use for studies of the ultrastructure of matter. These operated at 30-60 kV and most pioneering microscopists were preoccupied with their search for electron transparent substrates to support dispersions of particulates or bacteria for TEM examination and did not contemplate studies of bulk materials. Metallurgist H. Mahl and other physical scientists, accustomed to examining etched, deformed or machined specimens by reflected light in the optical microscope, were also highly motivated to capitalize on the superior resolution of the electron microscope. Mahl originated several methods of preparing thin oxide or lacquer impressions of surfaces that were transparent in his 50 kV TEM. The utility of replication was recognized immediately and many variations on the theme, including two-step negative-positive replicas, soon appeared. Intense development of replica techniques slowed after 1955 but important advances still occur. The availability of 100 kV instruments, advent of thin film methods for metals and ceramics and microtoming of thin sections for biological specimens largely eliminated any need to resort to replicas.


2020 ◽  
Vol 869 ◽  
pp. 28-39
Author(s):  
Danila Bakhtin ◽  
Leonid Kulikov ◽  
Alexander Malakhov ◽  
Stepan D. Bazhenov

Samples of nanoscale nano-PAF-10 and nano-PAF-24 porous aromatic framework-like polymeric materials were synthesized using the Suzuki reaction in a microemulsion. Monomers were tetrakis-(p-bromophenyl)methane and 1,4-phenylenediboronic acid. The main idea of the approach is to use 1,4-phenylenediboronic acid not only as a direct participant in the reaction, but also as a surfactant, which allows to stabilize the drops of the emulsion. Using this procedure, samples of PAF-like polymers were synthesized from the mixture, containing the mixture of tetrakis(p-bromophenyl)methane and 1,4-phenylenediboronic acid in ratio from 1:2 to 1:6; the reaction was conducted from 10 to 24 hours. The resulting materials were characterized by IR spectroscopy, NMR spectroscop. To estimate the particle size of the obtained materials, transmission electron microscopy was used. The object of the study were polymers, that were synthesized in 10-hour and 24-hour reactions. The particle size in the first material was in the range of 3-10 nm, in the second - from 30 to 100 nm.


Further experiments by transmission electron microscopy on thin sections of stainless steel deformed by small amounts have enabled extended dislocations to be observed directly. The arrangement and motion of whole and partial dislocations have been followed in detail. Many of the dislocations are found to have piled up against grain boundaries. Other observations include the formation of wide stacking faults, the interaction of dislocations with twin boundaries, and the formation of dislocations at thin edges of the foils. An estimate is made of the stacking-fault energy from a consideration of the stresses present, and the properties of the dislocations are found to be in agreement with those expected from a metal of low stacking-fault energy.


Nanoscale ◽  
2021 ◽  
Vol 13 (37) ◽  
pp. 15928-15936
Author(s):  
Zhuoyang Lu ◽  
Xiangyang Liu ◽  
Maogang He ◽  
Jiangang Long ◽  
Jiankang Liu

The nonvolatility and remarkable solvation property of ionic liquids is exploited to image the dynamic processes of DNA supramolecular aggregates and gold nanoparticle aggregates at nanometer resolution in an unsealed manner.


2000 ◽  
Vol 6 (S2) ◽  
pp. 872-873
Author(s):  
James R. Rosowski ◽  
Terry L. Bartels ◽  
James F. Colburn ◽  
Jannell L. Colton ◽  
Denton Belk ◽  
...  

Tadpole shrimp inhabit temporary freshwater pools and ponds where their occurrence is largely regulated by rainfall events and water temperature. When dry basins are flooded, cysts of Triops imbibe water and hatch to produce rapidly growing, carapaced larvae. While previous studies show anostracan (fairy shrimp) cyst-surface morphology often species specific, few studies illustrate shell ultrastructure of Triops and none has considered T. longicaudatus. Here we examine the shell of T. longicaudatus (Notostraca) and compare its fine structure to other species of Triops and to that of Artemiafranciscana(Anostraca), which we previously studied.Cysts, produced in culture from Utah broodstock, were purchased from Triops, Inc., 1924 Creighton Rd., Pensacola, FL 32504. Thin sections of cysts were prepared for transmission electron microscopy (TEM) as previously described (Fig. 1). Cysts were also examined with scanning electron microscopy (SEM), dry, whole or fractured (Figs. 2,3), or after imbibition and/or hatching in oxygen saturated, double-distilled water, at 25 ° C.


Clay Minerals ◽  
1987 ◽  
Vol 22 (2) ◽  
pp. 179-185 ◽  
Author(s):  
T. Imbert ◽  
A. Desprairies

AbstractTransmission electron microscopy of ultramicrotomed thin-sections of Pleistocene and Eocene glass shards revealed the neoformation of (i) illite and (ii) halloysite at the glass periphery. According to previous experimental studies, halloysite neoformation in marine environments can occur on glass shards deposited in Si-rich sediments; an excess of Ca tends to inhibit the reaction.


1981 ◽  
Vol 44 (335) ◽  
pp. 357-359 ◽  
Author(s):  
D. J. Barber

The advantages of polished ultra-thin sections (PUTS) in the study of very fine-grained materials, such as occur in some meteorites, have been illustrated by Fredriksson et al. (1978) whose technique is based on the earlier work of Beauchamp and WiUiford (1974). An essential feature of such methods for friable and heterogeneous materials is the use of a medium, usually an epoxy resin, to consolidate and partially impregnate them. Normally one polished side of the specimen is bonded to a glass slide during preparation, and the finished PUTS are integral with the slide on completion. PUTS are typically 2-5 microns in thickness.


Sign in / Sign up

Export Citation Format

Share Document