scholarly journals An Examination of the Composition and Microstructure of Coarse Intermetallic Particles in AA2099-T8, Including Li Detection

2018 ◽  
Vol 24 (4) ◽  
pp. 325-341 ◽  
Author(s):  
Colin M. MacRae ◽  
Anthony E. Hughes ◽  
James S. Laird ◽  
A. M. Glenn ◽  
Nicholas C. Wilson ◽  
...  

AbstractElectron and proton microprobes, along with electron backscatter diffraction (EBSD) analysis were used to study the microstructure of the contemporary Al–Cu–Li alloy AA2099-T8. In electron probe microanalysis, wavelength and energy dispersive X-ray spectrometry were used in parallel with soft X-ray emission spectroscopy (SXES) to characterize the microstructure of AA2099-T8. The electron microprobe was able to identify five unique compositions for constituent intermetallic (IM) particles containing combinations of Al, Cu, Fe, Mn, and Zn. A sixth IM type was found to be rich in Ti and B (suggesting TiB2), and a seventh IM type contained Si. EBSD patterns for the five constituent IM particles containing Al, Cu, Fe, Mn, and Zn indicated that they were isomorphous with four phases in the 2xxx series aluminium alloys including Al6(Fe, Mn), Al13(Fe, Mn)4 (two slightly different compositions), Al37Cu2Fe12 and Al7Cu2Fe. SXES revealed that Li was present in some constituent IM particles. Al SXES mapping revealed an Al-enriched (i.e., Cu, Li-depleted) zone in the grain boundary network. From the EBSD analysis, the kernel average misorientation map showed higher levels of localized misorientation in this region, suggesting greater deformation or stored energy. Proton-induced X-ray emission revealed banding of the TiB2 IM particles and Cu inter-band enrichment.

2019 ◽  
Vol 52 (4) ◽  
pp. 828-843 ◽  
Author(s):  
Dorian Delbergue ◽  
Damien Texier ◽  
Martin Lévesque ◽  
Philippe Bocher

X-ray diffraction (XRD) is a widely used technique to evaluate residual stresses in crystalline materials. Several XRD measurement methods are available. (i) The sin2ψ method, a multiple-exposure technique, uses linear detectors to capture intercepts of the Debye–Scherrer rings, losing the major portion of the diffracting signal. (ii) The cosα method, thanks to the development of compact 2D detectors allowing the entire Debye–Scherrer ring to be captured in a single exposure, is an alternative method for residual stress measurement. The present article compares the two calculation methods in a new manner, by looking at the possible measurement errors related to each method. To this end, sets of grains in diffraction condition were first identified from electron backscatter diffraction (EBSD) mapping of Inconel 718 samples for each XRD calculation method and its associated detector, as each method provides different sets owing to the detector geometry or to the method specificities (such as tilt-angle number or Debye–Scherrer ring division). The X-ray elastic constant (XEC) ½S 2, calculated from EBSD maps for the {311} lattice planes, was determined and compared for the different sets of diffracting grains. It was observed that the 2D detector captures 1.5 times more grains in a single exposure (one tilt angle) than the linear detectors for nine tilt angles. Different XEC mean values were found for the sets of grains from the two XRD techniques/detectors. Grain-size effects were simulated, as well as detector oscillations to overcome them. A bimodal grain-size distribution effect and `artificial' textures introduced by XRD measurement techniques are also discussed.


2012 ◽  
Vol 630 ◽  
pp. 35-40
Author(s):  
K.H. Jung ◽  
B. Ahn ◽  
S. Lee ◽  
D.S. Choi ◽  
Y.S. Lee ◽  
...  

In this research, the effect of casting methods on the workability of magnesium alloy ZK60A was investigated by comparing two different billets, fabricated by semi-continuous casting and die casting. To determine the workability of the materials, uniaxial compression tests were conducted at different elevated temperatures and strain rate of 0.01/s. In addition, the X-ray inspection system and electron backscatter diffraction (EBSD) were employed to compare their internal defects and microstructures, respectively. The workability of ZK60A depending on the casting methods is discussed based on the obtained experimental results.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 677
Author(s):  
Alexander Smirnov ◽  
Evgeniya Smirnova ◽  
Sergey Alexandrov

It is, in general, essential to investigate correlations between the microstructure and properties of materials. Plastic deformation often localizes within thin layers. As a result, many material properties within such layers are very different from the properties in bulk. The present paper proposes a new method for determining the thickness of a thin surface layer of intensive plastic deformation in metallic materials. For various types of materials, such layers are often generated near frictional interfaces. The method is based on data obtained by Electron Backscatter Diffraction. The results obtained are compared with those obtained by an alternative method based on microhardness measurements. The new method allows for determining the layer thickness of several microns in specimens after grinding. In contrast, the measurement of microhardness does not reveal the presence of this layer. The grain-based and kernel-based types of algorithms are also adopted for determining the thickness of the layer. Data processed by the strain contouring and kernel average misorientation algorithms are given to illustrate this method. It is shown that these algorithms do not clearly detect the boundary between the layer of intensive plastic deformation and the bulk. As a result, these algorithms are unable to determine the thickness of the layer with high accuracy.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 75 ◽  
Author(s):  
Jialin Zhu ◽  
Chao Deng ◽  
Yahui Liu ◽  
Nan Lin ◽  
Shifeng Liu

One hundred and thirty-five degree clock rolling significantly improves the texture homogeneity of tantalum sheets along the thickness, but a distinctly fragmented substructure is formed within {111} (<111>//normal direction (ND)) and {100} (<100>//ND) deformation grains, which is not suitable to obtain a uniform recrystallization microstructure. Thus, effects of different annealing temperatures on the microstructure and texture heterogeneity of tantalum sheets along the thickness were investigated by X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). Results show that the texture distribution along θ-fiber and γ-fiber is irregular and many large grains with {111} orientation develop during annealing at high temperature. However, low-temperature annealing can not only weaken the texture intensity in the surface and the center layer but also introduce a more uniform grain size distribution. This result can be attributed to the subgrain-nucleation-dominated recrystallization mechanism induced by recovery at low temperature, and moreover, a considerable decline of recrystallization driving force resulting from the release of stored energy in the deformation matrix.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 406
Author(s):  
Samiha Saad ◽  
Zakaria Boumerzoug ◽  
Anne Laure Helbert ◽  
François Brisset ◽  
Thierry Baudin

The objective of this work is to study, on a copper wire, the effect of TiO2-nanoparticles on electrodeposited nickel. Both the microstructure and surface morphology (texture) of the coating were investigated. This deposit is obtained from baths of sulfated electroplating Watts. The Ni-TO2 composite coating is deposited at a temperature of 45 °C. The composite deposit is prepared by adding nanoparticles of TiO2 to the electrolyte. The characterization has been carried out by X-ray diffraction, scanning electron microscopy, microhardness measurements, and electron backscatter diffraction (EBSD). Vickers microhardness was used to characterize the mechanical properties of the electrodeposited nickel. The results showed the effects of the TiO2 on the composition, the surface morphology, and the hardness of the deposited layer. However, there was not an effect of TiO2 nanoparticles on texture.


Sign in / Sign up

Export Citation Format

Share Document