Pteridophytes: evolutionary boon as medicinal plants

2016 ◽  
Vol 14 (4) ◽  
pp. 328-355 ◽  
Author(s):  
Hit Kishore Goswami ◽  
Kakali Sen ◽  
Radhanath Mukhopadhyay

AbstractSelective use of crude plant extracts has been the oldest ritual in ancient Indian Medicinal System ‘Ayurveda’, as well as in Traditional Chinese Medicine system for thousands of years. This has been well documented that herbal medicines of Chinese, Indian, Korean and Native American people had included bryophytes, lichens, lycophytes and ferns. Since antiquity, most of the ferns and fern allies have given many health benefits to ancient civilizations who had used them for food, tea and drugs. Modern approaches have combined multidisciplinary technologies and have specific chemical compounds extracted and identified for producing very particulate medicines from plant parts. Plants, which yield appreciable quality and quantity of polysaccharides, steroids, terpenoids, flavonoids, alkaloids and antibiotics are suitable for dragging out drugs for many ailments/diseases, including cancer treatments. Modern explorations on the functional activities of pteridophytes for human health by discovering specific compounds and their usage in medicines have widened the scope of pteridophytes by shaping these plants as a great boon for pharmaceutical companies and related industries. Even ‘fern weeds’, which invade our freshwater bodies and reduce the freshwater wealth of a lake, e.g. Azolla, Salvinia, Marsilea, Ceratopteris, etc. can be utilized to produce life saving drugs because they are reservoirs of very many organic compounds that are useful as medicines. Some of the fern genera have a few unique secondary metabolites, which have not been discovered in higher plants. Polyphenols are useful phytochemicals, which provide health benefits such as antioxidants. From experiments on screening of total polyphenol contents of 37 ferns and fern allies, Polystichum lepidocaulon and Polystichum polyblepharum were reported to have more than 13% of total polyphenols from dried materials of both fronds and rhizomes. In addition, fronds of Davallia mariesii and rhizomes of Cyrtomium fortune, Dicranopteris pedata, Athyrium niponicum and Dryopteris nipponensis showed more than 10% of total polyphenols from dried materials. High bioactivities of traditional medicinal ferns have been studied internationally to underscore their roles in medicine. These attempts have confirmed various bioactivities, such as antioxidant, antimicrobial, antiviral, anti-inflammatory, antitumor and anti-HIV, etc. The occurrence of antibiotic activity in the extracts of more than 200 species of pteridophytes has been shown to be of prime significance within the period of 1975–2015. The active substances in many cases were found to be antibacterial to penicillin-resistant Staphylococcus aureus, Mycobacterium phlei, Salmonella typhi, Vibrio cholera, and Pseudomonas aeruginosa. Dryopteris cochleata was active against both bacteria and fungi. Five other species of Dryopteris showed remarkable antibacterial activity. The ferns of ‘Adiantum group’ have been found to be particularly active against Gram-positive bacteria. The polypodiaceous ferns constitute a rich group of which Microsorum alternifolium, Leptochillus decurrens, Polypodium irioides, Pyrrosia mannii and Phymatodes ebenipes deserve special mention. Several thelypteroid, davallioid and athyrioid ferns, in addition to antibiotic activity have also been found to show most useful bioactivity for our life – the antioxidant activity. The latter superb biochemical quality of ferns alone makes most ferns of great advantage to human health. Lycophytes particularly Lycopodium clavatum and Equisetum hyemale and ferns (Dryopteris and Adiantums) have had constituted the backbone of Homeopathic medicines and now many more genera have been added to the network of modern medicinal approaches in the drug industry. These pteridophytes are indispensably integral parts of forests world over. A few of the aquatic ferns (Azolla, Salvinia) serve as excellent bio-fertilizers and bioremediation agents. Medicinal plants are under cultivation and cultured world over. Botanically, say a thousand years ago, these were wild and many of them were weeds. As pteridophytes have survived since Paleozoic, they have undergone series of disruptive adaptive changes of environment than any other vascular plants. These plants most likely, could withstand the tests of geological time on account of their being guarded with genetic capability of possessing many useful oils, phytochemicals (secondary metabolites) such as flavonoids, steroids, alkaloids, phenols, triterpenoid compounds, varieties of amino acids and fatty acids, which in turn offer inherent tolerance and defense system . Additionally, from evolutionary point of view majority of ferns have constituted carpet flora and have worked as ‘cradles’ in natural forests so as to nurture small animals particularly reptiles and mammals. Ferns are denominators of prevalent rich biodiversity in almost every part of the earth. Comparison of evolutionary adaptations and natural innovations illuminate the genetic basis for the development of organisms. It is emphasized that there should be good field stations just in the peripheral region of reserved forests with large green houses to function as ‘Fernariums/ Mossariums/ and/or Lichenariums’ to conserve and maintain rare, endangered and medicinally superlative species found in those areas/forests. Gene networks (DNA stretches) that retain similar wiring diagrams (some or many similar DNA sequences) among related, distantly related or even totally diverse organisms point to the ways in which regulatory regions of the genome have evolved. Indisputably, comparative genomics can help us in deciphering evolvability of gene network and conservation modes during vast geological journey in evolution. We need exhaustive genomics and multidimensional molecular genetic studies on pteridophytes so as to discover unique DNA sequences, which could turn the gates of modern medicine.

Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 119
Author(s):  
Ricardo Assunção ◽  
Magdalena Twarużek ◽  
Robert Kosicki ◽  
Carla Viegas ◽  
Susana Viegas

Tea has been consumed for thousands of years. Despite the different varieties, particular emphasis has been placed on green tea (GT), considering the associated health benefits following its regular consumption, some of which are due to its polyphenol constituents, such as epigallocatechin-3-gallate (EGCG). Tea is not prone to the growth of microorganisms, except fungus, when proper storage, handling, and packing conditions are compromised. Consequently, mycotoxins, secondary metabolites of fungi, could contaminate tea samples, affecting human health. In the present study, we aimed to assess the balance between risks (due to mycotoxins and high levels of EGCG) and benefits (due to moderate intake of EGCG) associated with the consumption of GT. For this, 20 GT samples (10 in bulk and 10 in bags) available in different markets in Lisbon were analyzed through a LC–MS/MS method, evaluating 38 different mycotoxins. Six samples revealed detectable values of the considered toxins. Current levels of mycotoxins and EGCG intake were not associated with health concerns. Scenarios considering an increasing consumption of GT in Portugal showed that drinking up to seven cups of GT per day should maximize the associated health benefits. The present study contributes to the future establishment of GT consumption recommendations in Portugal.


2021 ◽  
Vol 13 (2) ◽  
pp. 10953
Author(s):  
Nehru LAVANYA ◽  
Vellingiri MANON MANI ◽  
Nachimuthu SARANYA ◽  
Rajendran DEEPAKKUMAR ◽  
Kathirvel PREETHI

Medicinal plants are a wealthy source of natural medicinal properties and remain as base for new drug discoveries. Endophyte from the specific medicinal plants produce the analogous metabolites as that of the host plant. The metabolites from the endophytes comprise maximum therapeutic properties and have been extensively applied in treating various diseases and disorders. This study was focused on identification of the endophytic fungi from the medicinal plant Blumea axillaris and investigates the diversity of endophytic fungi from various explants of the same plant. The explants were cultured on potato dextrose agar and 6 endophytic fungi were successfully isolated from Blumea axillaris. They were identified morphologically and confirmed with molecular analysis as Xylaria arbuscula, Paraphoma radicina, Phomopsis phaseoli, Sordaria fimicola, Aspergillus amstelodami, Diaporthe eucalyptorum. The DNA sequences were analyzed by BLAST and the phylogenetic tree was constructed with neighbor joining method. The six isolates were subjected to antagonistic activity for the selection of potential strain and the bioactive strain Xylaria arbuscula was selected for the production of secondary metabolites by optimization. The parameters like pH, temperature, incubation period, carbon and nitrogen (organic and inorganic source) were optimized for secondary metabolite production. The fungal metabolite was extracted by solvent extraction method using polar and non-polar solvents like propanol, methanol, chloroform, acetone and ethyl acetate. To investigate the bioactivities of the fungal crude extract was subjected first for its antioxidant activity using DPPH radical scavenging method, followed by antimicrobial activity of methanolic (MeOH) extract of Xylaria arbuscula, that were also analyzed by the agar well-diffusion method against the clinical pathogens Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pnuemoniae, Proteus mirabilis, Aspergillus niger and Candida albicans.


2021 ◽  
Vol 13 (1) ◽  
pp. 10854
Author(s):  
Arun D. SHARMA ◽  
Inderjeet KAUR

Worldwide use of chemical pesticides is on rise which is creating a big problem to environment and human health. Hence great interest has been generated to find out botanical leads having anti-pest properties from medicinal plants. The objective of this work was to evaluate the insecticidal potential of Eucalyptus globulus waste hydrosol obtained after essential oil distillation. Samples of Eucalyptus globulus genus were collected from near-by areas of study, and were hydro-distilled and their by-product ‘hydrosol was analyzed for phenolics and tannin determination. UV-VIS, FT-IR and fluorescent study was also conducted of by-product hydrosol. In addition, insecticidal activity of by-product hydrosol was also monitored against mealy bug. Substantial amount of phenolics and tannins were detected in the by-product hydrosol. UV and fluorescent spectroscopy revealed the presence of secondary metabolites. Significantly higher insecticidal activity was observed of by-product hydrosol against mealy bug. The results suggested that by-product hydrosol from Eucalyptus globulus essential oil distillation can be considered as potential candidates for bio-control of pests.


2021 ◽  
Vol 18 (1) ◽  
pp. 23-35
Author(s):  
Bhupesh Kaushik ◽  
Jatin Sharma ◽  
Keshav Yadav ◽  
Prithik Kumar ◽  
Abhilasha Shourie

Over the past decades, there has been increasing attention tothe study of medicinal plants that contain many phytochemicals beneficial for human health. A number of secondary metabolites derived from various plants have been used as drug components to treat several human disorders since ancient times. The traditional therapeutic applications of secondary metabolites have been reported in the whole world. Numerous bioactive phytochemicals constituents have been identified and isolated using many advanced techniques. These bioactive phytochemicals are responsible for many pharmacological activities such as anti-inflammation, anti-cancer, anti-allergic, and antimicrobial infection. These secondary metabolites are not only beneficial for human health but also protect plants themselves from biotic and abiotic stress. These secondary metabolites are classified into many subclasses like terpenoids, alkaloids and phenolics. Each class of secondary metabolites has its pharmacological activities, which is required to be studied thoroughly for better use in pharmaceuticals, cosmetics, food, and other industries. Therefore, this review paper represents many medicinal plants that contain bioactive secondary metabolites and show pharmacological activities, which provides an opportunity to utilize them for improvement of human health and discover new herbal medicines.


Planta Medica ◽  
2015 ◽  
Vol 81 (11) ◽  
Author(s):  
B Allison ◽  
V Hester ◽  
M Fleming ◽  
M Allenby ◽  
S Bryant ◽  
...  

2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


Author(s):  
Lore M. Dickey

In this chapter the author explores the mental health of those with nonbinary gender identities and focuses on the issues they face. The author defines nonbinary identities and discusses how these identities are different than people who have binary identities. There is a summary of the extant psychological literature focusing on people with nonbinary identities. Attention is also brought to how racial and ethnic minority individuals, including Native American people, conceptualize nonbinary identities. The chapter ends with information about the lack of attention to the Global South and the need for additional research and training in the mental health of those with nonbinary identities.


2021 ◽  
Vol 53 (5) ◽  
pp. 515-522
Author(s):  
P Raynham

Electric light in buildings may provide some health benefits; however, for most people these benefits are likely to be small. It is possible for electric lighting to cause health problems, if there is too little light or there is glare, but for the most part there is good guidance available and these problems can be avoided. The quality of the lit environment can have a psychological impact and this may in turn impact well-being. A starting point for this is perceived adequacy of illumination. Related lighting metrics are examined and a hypothetical explanation is suggested.


2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Trishala Gopikrishna ◽  
Harini Keerthana Suresh Kumar ◽  
Kumar Perumal ◽  
Elavarashi Elangovan

Abstract Purpose Fermented soybean foods (FSF) is popularly consumed in the South-East Asian countries. Bacillus species, a predominant microorganism present in these foods, have demonstrated beneficial and deleterious impacts on human health. These microorganisms produce bioactive compounds during fermentation that have beneficial impacts in improving human health. However, the health risks associated with FSF, food pathogens, biogenic amines (BAs) production, and late-onset anaphylaxis, remain a concern. The purpose of this review is to present an in-depth analysis of positive and negative impacts as a result of consumption of FSF along with the measures to alleviate health risks for human consumption. Methods This review was composed by scrutinizing contemporary literature of peer-reviewed publications related to Bacillus and FSF. Based on the results from academic journals, this review paper was categorized into FSF, role of Bacillus species in these foods, process of fermentation, beneficial, and adverse influence of these foods along with methods to improve food safety. Special emphasis was given to the potential benefits of bioactive compounds released during fermentation of soybean by Bacillus species. Results The nutritional and functional properties of FSF are well-appreciated, due to the release of peptides and mucilage, which have shown health benefits: in managing cardiac disease, gastric disease, cancer, allergies, hepatic disease, obesity, immune disorders, and especially microbial infections due to the presence of probiotic property, which is a potential alternative to antibiotics. Efficient interventions were established to mitigate pitfalls like the techniques to reduce BAs and food pathogens and by using a defined starter culture to improve the safety and quality of these foods. Conclusion Despite some of the detrimental effects produced by these foods, potential health benefits have been observed. Therefore, soybean foods fermented by Bacillus can be a promising food by integrating effective measures for maintaining safety and quality for human consumption. Further, in vivo analysis on the activity and dietary interventions of bioactive compounds among animal models and human volunteers are yet to be achieved which is essential to commercialize them for safe consumption by humans, especially immunocompromised patients.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ana Paula Schaan ◽  
Dionison Sarquis ◽  
Giovanna C. Cavalcante ◽  
Leandro Magalhães ◽  
Eliene R. P. Sacuena ◽  
...  

AbstractShifts in subsistence strategy among Native American people of the Amazon may be the cause of typically western diseases previously linked to modifications of gut microbial communities. Here, we used 16S ribosomal RNA sequencing to characterise the gut microbiome of 114 rural individuals, namely Xikrin, Suruí and Tupaiú, and urban individuals from Belém city, in the Brazilian Amazon. Our findings show the degree of potential urbanisation occurring in the gut microbiome of rural Amazonian communities characterised by the gradual loss and substitution of taxa associated with rural lifestyles, such as Treponema. Comparisons to worldwide populations indicated that Native American groups are similar to South American agricultural societies and urban groups are comparable to African urban and semi-urban populations. The transitioning profile observed among traditional populations is concerning in light of increasingly urban lifestyles. Lastly, we propose the term “tropical urban” to classify the microbiome of urban populations living in tropical zones.


Sign in / Sign up

Export Citation Format

Share Document