scholarly journals GaN-based single-chip frontend for next-generation X-band AESA systems

2018 ◽  
Vol 10 (5-6) ◽  
pp. 660-665 ◽  
Author(s):  
Patrick Schuh ◽  
Hardy Sledzik ◽  
Rolf Reber

AbstractA next generation of active electronically scanned array (AESA) antennas will be challenged with the need for lower size, weight, power, and cost. This leads to enhanced demands especially with regard to the integration density of the radio frequency-part inside aT/Rmodule. The semiconductor material GaN has proven its capacity for high-power amplifiers (HPA), robust receive components as well as switch components for separation of transmit and receive mode. This paper will describe the design and measurement results of a GaN-based single-chipT/Rmodule frontend (HPA, low noise anplifier, and single-pole double-throw (SPDT)) using UMS GH25 technology and covering the frequency range from 8 GHz to 12 GHz. The key performance parameters of the frontend are 13 W minimum transmit (TX) output power over the whole frequency range with peak power up to 17 W. The frontend in receive (RX) mode has a noise figure below 3.2 dB over the whole frequency range, and can survive more than 5 W input power. The large signal insertion loss of the used SPDT is below 0.9 dB at 43 dBm input power level.

Author(s):  
François-Xavier Estagerie ◽  
Dominique Langrez ◽  
Jean-Luc Muraro ◽  
Jean-Louis Cazaux ◽  
Rémy Leblanc

This work presents a wideband amplifier, in 12–19 GHz frequency range, with noise figure lower than 1.35 and 26 dB of gain developed in the frame of European Component Initiative program, supported by European Space Agency. By using a flexible biasing, this amplifier allows us to reach a significant linearity, output power at 1 dB compression up to 19 dBm, or to reduce the DC consumption close to 210 mW. This versatility implies that a user has a low-noise amplifier) or medium power amplifier in a single chip. The D01PHS process, from OMMIC foundry, has been chosen in order to realize this MMIC, thanks to linearity capability, and also thanks to a significant potential for low-noise amplification.


2002 ◽  
Vol 25 (1) ◽  
pp. 1-22 ◽  
Author(s):  
R. Makri ◽  
M. Gargalakos ◽  
N. K. Uzunoglu

Recent advances in printed circuit and packaging technology of microwave and millimeter wave circuits result to the increasing use of MMICs in telecommunication systems. At Microwave and Fiber Optics Lab of NTUA several designs of various MMICs were conducted using the HP Eesof CAD Tool and FET and HEMT models of F20 and H40 GaAs foundry process of GEC Marconi. The designed MMICs are constructed in Europractice Organization while on-wafer probe measurements are performed in the Lab. In that framework, MMIC technologies are employed in the design of power and low noise amplifiers and couplers to be used for mobile and wireless communications as well as remote sensing and radar applications. A medium power linear FET amplifier has been designed with combining techniques on a single chip. The circuit operates at 14.4–15.2 GHz with an input power of−15dB m, a 36 dB total gain, while the input and output VSWR is less than 1.6. Due to high cost of MMIC fabrication only the first subunit was manufactured and tests verified the simulation results. Additionally, novel techniques have been used for the design of two coupling networks at 10 GHz in order to minimize the area occupied. A meander-kind design as well as shunt capacitors were implemented for a90°quadrature coupler and a Wilkinson one in order to reduce size. Finally, a two stages low noise amplifier was designed with the use of H40 GaAs process in order the differences between the relevant designs to be explored. The key specifications for this MMIC LNA include operation at 10 GHz with a total gain of 17 dB while the noise figure is less than 1.5 dB.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750075 ◽  
Author(s):  
Najam Muhammad Amin ◽  
Lianfeng Shen ◽  
Zhi-Gong Wang ◽  
Muhammad Ovais Akhter ◽  
Muhammad Tariq Afridi

This paper presents the design of a 60[Formula: see text]GHz-band LNA intended for the 63.72–65.88[Formula: see text]GHz frequency range (channel-4 of the 60[Formula: see text]GHz band). The LNA is designed in a 65-nm CMOS technology and the design methodology is based on a constant-current-density biasing scheme. Prior to designing the LNA, a detailed investigation into the transistor and passives performances at millimeter-wave (MMW) frequencies is carried out. It is shown that biasing the transistors for an optimum noise figure performance does not degrade their power gain significantly. Furthermore, three potential inductive transmission line candidates, based on coplanar waveguide (CPW) and microstrip line (MSL) structures, have been considered to realize the MMW interconnects. Electromagnetic (EM) simulations have been performed to design and compare the performances of these inductive lines. It is shown that the inductive quality factor of a CPW-based inductive transmission line ([Formula: see text] is more than 3.4 times higher than its MSL counterpart @ 65[Formula: see text]GHz. A CPW structure, with an optimized ground-equalizing metal strip density to achieve the highest inductive quality factor, is therefore a preferred choice for the design of MMW interconnects, compared to an MSL. The LNA achieves a measured forward gain of [Formula: see text][Formula: see text]dB with good input and output impedance matching of better than [Formula: see text][Formula: see text]dB in the desired frequency range. Covering a chip area of 1256[Formula: see text][Formula: see text]m[Formula: see text]m including the pads, the LNA dissipates a power of only 16.2[Formula: see text]mW.


Author(s):  
Frédéric Drillet ◽  
Jérôme Loraine ◽  
Hassan Saleh ◽  
Imene Lahbib ◽  
Brice Grandchamp ◽  
...  

Abstract This paper presents the radio frequency (RF) measurements of an SPST switch realized in gallium nitride (GaN)/RF-SOI technology compared to its GaN/silicon (Si) equivalent. The samples are built with an innovative 3D heterogeneous integration technique. The RF switch transistors are GaN-based and the substrate is RF-SOI. The insertion loss obtained is below 0.4 dB up to 30 GHz while being 1 dB lower than its GaN/Si equivalent. This difference comes from the vertical capacitive coupling reduction of the transistor to the substrate. This reduction is estimated to 59% based on a RC network model fitted to S-parameters measurements. In large signal, the linearity study of the substrate through coplanar waveguide transmission line characterization shows the reduction of the average power level of H2 and H3 of 30 dB up to 38 dBm of input power. The large signal characterization of the SPST shows no compression up to 38 dBm and the H2 and H3 rejection levels at 38 dBm are respectively, 68 and 75 dBc.


2019 ◽  
Vol 11 (7) ◽  
pp. 635-644 ◽  
Author(s):  
T. Shivan ◽  
E. Kaule ◽  
M. Hossain ◽  
R. Doerner ◽  
T. Johansen ◽  
...  

AbstractThis paper reports on an ultra-wideband low-noise distributed amplifier (LNDA) in a transferred-substrate InP double heterojunction bipolar transistor (DHBT) technology which exhibits a uniform low-noise characteristic over a large frequency range. To obtain very high bandwidth, a distributed architecture has been chosen with cascode unit gain cells. Each unit cell consists of two cascode-connected transistors with 500 nm emitter length and ft/fmax of ~360/492 GHz, respectively. Due to optimum line-impedance matching, low common-base transistor capacitance, and low collector-current operation, the circuit exhibits a low-noise figure (NF) over a broad frequency range. A 3-dB bandwidth from 40 to 185 GHz is measured, with an NF of 8 dB within the frequency range between 75 and 105 GHz. Moreover, this circuit demonstrates the widest 3-dB bandwidth operation among all reported single-stage amplifiers with a cascode configuration. Additionally, this work has proposed that the noise sources of the InP DHBTs are largely uncorrelated. As a result, a reliable prediction can be done for the NF of ultra-wideband circuits beyond the frequency range of the measurement equipment.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 1
Author(s):  
Mahesh Mudavath ◽  
K. Hari Kishore

This paper describes a layout of a CMOS Low Noise Amplifier for reconfigurable packages which include GPS, GSM Wi-Fi applications. The improvement of a notably linear Radio front-stop, able to function with Galileo and GPS satellite signals suitable for coexisting in a mobile opposed environment for area based offerings, pleasing the fundamental necessities for a mass market product which includes low cost, low footprint, good accuracy, low strength intake and high sensitivity. primarily based on a wideband enter matching, the LNA stages cowl all band of hobby even as reaching a great change-off between excessive gain, low noise parent and coffee electricity intake. The complete simulation analysis of the circuit results in the frequency range of 1.4 GHz to 2 GHz. The noise figure is 1.8 dB at 1.4GHz and rises to 3.4 dB at 2 GHz. The input return and output return losses (S11, S22) of the LNA at a frequency range between 1.4 GHz and 2 GHz are S11= -12 dB, S22 =-44.73 dB at 1.77 GHz and S22 =-26.47 dB at 2 GHz. The overall gain of the LNA (S21) is 13 dB at 1.4025 GHz, 3rd order input intercept point (IIP3) = -3.16 dBm and -1dB compression point is -12.56 dBm. Input Impedance of 50Ω, 3dB Power Bandwidth of 450MHz, and Power Dissipation of 2.7mW at 1.2V power supply.


2013 ◽  
Vol 22 (02) ◽  
pp. 1250088 ◽  
Author(s):  
MERIAM BEN AMOR ◽  
MOURAD LOULOU ◽  
SEBASTIEN QUINTANEL ◽  
DANIEL PASQUET

In this paper we present the design of a fully integrated low noise amplifier for WiMAX standard with AMS 0.35 μm CMOS process. This LNA is designed to cover the frequency range for licensed and unlicensed bands of the WiMAX 2.3–5.9 GHz. The proposed amplifier achieves a wide band input and output matching with S11 and S22 lower than -10 dB, a flat gain of 12 dB and a noise figure around 3.5 dB for the entire band and from the upper to the higher frequencies. The presented wide band LNA employs a Chebyshev filter for input matching and an inductive shunt feedback for output matching with a bias current of 15 mA and a supply voltage of 2.5 V.


2010 ◽  
Vol 2 (3-4) ◽  
pp. 333-339 ◽  
Author(s):  
Flavia Crispoldi ◽  
Alessio Pantellini ◽  
Simone Lavanga ◽  
Antonio Nanni ◽  
Paolo Romanini ◽  
...  

Radio Frequency Micro-Electro-Mechanical System (RF-MEMS) represents a feasible solution to obtain very low power dissipation and insertion loss, very high isolation and linearity switch with respect to “solid state” technologies. In this paper, we demonstrate the full integration of RF-MEMS switches in the GaN-HEMT (Gallium Nitride/High Electron Mobility Transistor) fabrication line to develop RF-MEMS devices and LNA-MMIC (Low Noise Amplifier/Monolithic Microwave Integrated Circuit) prototype simultaneously in the same GaN wafer. In particular, two different coplanar wave (CPW) LNAs and a series of discrete RF-MEMS in ohmic-series and capacitive-shunt configuration have been fabricated. RF-MEMS performances reveal an insertion loss and isolation better than 1 and 15 dB, respectively, in the frequency range 20–50 GHz in the case of pure capacitive shunt switches and in the frequency range 5–35 GHz for the ohmic-series switches. Moreover, the GaN HEMT device shows an Fmax of about 38 GHz and a power density of 6.5 W/mm, while for the best LNA-MMIC we have obtained gain better than 12 dB at 6–10 GHz with a noise figure of circa 4 dB, demonstrating the integration achievability.


Sign in / Sign up

Export Citation Format

Share Document