The effects of low-moderate dose prenatal ethanol exposure on the fetal and postnatal rat lung

2013 ◽  
Vol 4 (5) ◽  
pp. 358-367 ◽  
Author(s):  
M. E. Probyn ◽  
J. S. M. Cuffe ◽  
S. Zanini ◽  
K. M. Moritz

Little is known about whether exposure of the fetus to alcohol alters pulmonary development or function. This study aimed to determine whether low-moderate ethanol (EtOH) exposure throughout gestation alters structural and non-respiratory functional aspects of the fetal and postnatal lung. Sprague–Dawley rats were fed an ad libitum liquid diet ±6% v/v EtOH daily throughout pregnancy, achieving a plasma ethanol (EtOH) concentration of 0.03%. Gene and protein expression was determined in pulmonary tissue collected from fetuses at embryonic day (E) 20 and adult offspring. The percentage of airspace and alveolar size was measured in pulmonary tissue collected at postnatal day (PN) 1. At E20, EtOH-exposed fetuses had decreased aquaporin 5 mRNA levels and a non-significant trend for decreased epithelial sodium channel type α; expression of other pulmonary fluid homeostatic and development genes and surfactant protein genes were not different between groups. At PN1, there was no difference between EtOH-exposed and control offspring in the distal airspace percentage or diameter. At 8 months, collagen type III α1 gene expression was upregulated in EtOH-exposed male offspring; this was associated with increased collagen deposition at 10 months. At 19 months, male EtOH-exposed offspring had a 25% reduction in the protein levels of surfactant protein B. The alterations observed in male EtOH-exposed offspring suggest chronic low-moderate prenatal EtOH-exposure during development may result in increased pulmonary fibrosis. Such an alteration would decrease the respiratory capacity of the lung.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidan Liu ◽  
Chaim Z. Aron ◽  
Cullen M. Grable ◽  
Adrian Robles ◽  
Xiangli Liu ◽  
...  

AbstractLevels of intestinal toll-like receptor 4 (TLR4) impact inflammation in the neonatal gastrointestinal tract. While surfactant protein A (SP-A) is known to regulate TLR4 in the lung, it also reduces intestinal damage, TLR4 and inflammation in an experimental model of necrotizing enterocolitis (NEC) in neonatal rats. We hypothesized that SP-A-deficient (SP-A−/−) mice have increased ileal TLR4 and inflammatory cytokine levels compared to wild type mice, impacting intestinal physiology. We found that ileal TLR4 and proinflammatory cytokine levels were significantly higher in infant SP-A−/− mice compared to wild type mice. Gavage of neonatal SP-A−/− mice with purified SP-A reduced ileal TLR4 protein levels. SP-A reduced expression of TLR4 and proinflammatory cytokines in normal human intestinal epithelial cells (FHs74int), suggesting a direct effect. However, incubation of gastrointestinal cell lines with proteasome inhibitors did not abrogate the effect of SP-A on TLR4 protein levels, suggesting that proteasomal degradation is not involved. In a mouse model of experimental NEC, SP-A−/− mice were more susceptible to intestinal stress resembling NEC, while gavage with SP-A significantly decreased ileal damage, TLR4 and proinflammatory cytokine mRNA levels. Our data suggests that SP-A has an extrapulmonary role in the intestinal health of neonatal mice by modulating TLR4 and proinflammatory cytokines mRNA expression in intestinal epithelium.


1998 ◽  
Vol 275 (5) ◽  
pp. L877-L886 ◽  
Author(s):  
Brian I. Labow ◽  
Steve F. Abcouwer ◽  
Cheng-Mao Lin ◽  
Wiley W. Souba

During physiological stress, the lung increases production of the amino acid glutamine (Gln) using the enzyme Gln synthetase (GS) to maintain Gln homeostasis. Glucocorticoid hormones are considered the principal mediators of GS expression during stress. However, whereas animal studies have shown that glucocorticoids increase lung GS mRNA levels 500–700%, GS activity levels rise only 20–45%. This discrepancy suggests that a posttranscriptional control mechanism(s) ultimately determines GS expression. We hypothesized that the level of GS protein in the lung is governed by the intracellular Gln concentration through a mechanism of protein destabilization, a feedback regulatory mechanism that has been observed in vitro. To test this hypothesis, Sprague-Dawley rats were treated with a Gln-free diet and the GS inhibitor methionine sulfoximine (MSO) to deplete tissue Gln levels and prevent this feedback regulation. Exposure to Gln-free chow and MSO (100 mg/kg body wt) for 6 days decreased plasma Gln levels 50% ( P < 0.01) and decreased lung tissue Gln levels by 70% ( P < 0.01). Although lung GS mRNA levels were not influenced by Gln depletion, there was a sevenfold ( P < 0.01) increase in GS protein. A parenteral Gln infusion (200 mM, 1.5 ml/h) for the last 2 days of MSO treatment replenished lung Gln levels to 65% of control level and blunted the increase in GS protein levels by 33% ( P < 0.05) compared with rats receiving an isomolar glycine solution. The acute effects of glucocorticoid and MSO administration on lung GS expression were also measured. Whereas dexamethasone (0.5 mg/kg) and MSO injections individually augmented lung GS protein levels twofold and fourfold ( P < 0.05), respectively, the combination of dexamethasone and MSO produced a synergistic, 12-fold induction ( P < 0.01) in lung GS protein over 8 h. The data suggest that, whereas glucocorticoids are potent mediators of GS transcriptional activity, protein stability greatly influences the ultimate expression of GS in the lung.


2011 ◽  
Vol 300 (1) ◽  
pp. L139-L147 ◽  
Author(s):  
Foula Sozo ◽  
Melissa Vela ◽  
Victoria Stokes ◽  
Kelly Kenna ◽  
Peter J. Meikle ◽  
...  

Prenatal ethanol exposure increases collagen deposition and alters surfactant protein (SP) expression and immune status in lungs of near-term fetal sheep. Our objectives were to determine 1) whether these prenatal effects of repeated gestational ethanol exposure persist after birth and 2) whether surfactant phospholipid composition is altered following prenatal ethanol exposure. Pregnant ewes were chronically catheterized at 90 days of gestational age (DGA) and given a 1-h daily infusion of ethanol (0.75 g/kg, n = 9) or saline ( n = 7) from 95 to 135 DGA; ethanol administration ceased after 135 DGA. Lambs were born naturally at full term (146 ± 0.5 DGA). Lung tissue was examined at 9 wk postnatal age for alterations in structure, SP expression, and inflammation; bronchoalveolar lavage fluid was examined for alterations in surfactant phospholipid composition. At 134 DGA, surfactant phospholipid concentration in amniotic fluid was significantly reduced ( P < 0.05) by ethanol exposure, and the composition was altered. In postnatal lambs, there were no significant differences between treatment groups in birth weight, postnatal growth, blood gas parameters, and lung weight, volume, tissue fraction, mean linear intercept, collagen content, proinflammatory cytokine gene expression, and bronchoalveolar lavage fluid surfactant phospholipid composition. Although SP-A, SP-B, and SP-C mRNA levels were not significantly different between treatment groups, SP-D mRNA levels were significantly greater ( P < 0.05) in ethanol-treated animals; as SP-D has immunomodulatory roles, innate immunity may be altered. The adverse effects of daily ethanol exposure during late gestation on the fetal lung do not persist to 2 mo after birth, indicating that the developing lung is capable of repair.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hanyu Liu ◽  
Yabo Li ◽  
Yingdong Zou ◽  
Xingzong Zhang ◽  
Xiongfei Shi ◽  
...  

The study is aimed at observing the influence of microribonucleic acid- (miRNA-) 30a-50p on the pulmonary fibrosis in mice with Streptococcus pneumoniae infection through the regulation of autophagy by Beclin-1. Specific pathogen-free mice were instilled with Streptococcus pneumoniae through the trachea to establish the pulmonary fibrosis model. Then, they were divided into the miRNA-30a-50p mimics group (mimics group, n = 10 ) and miRNA-30a-5p inhibitors group (inhibitors group, n = 10 ), with the control group ( n = 10 ) also set. Pulmonary tissue wet weight/dry weight (W/D) was detected. The content of tumor necrosis factor-α (TNF-α), interleukin- (IL-) 6, and myeloperoxidase (MPO) was determined using enzyme-linked immunosorbent assay (ELISA). Besides, the changes in the pulmonary function index dynamic lung compliance (Cdyn), plateau pressure (Pplat), and peak airway pressure (Ppeak) were monitored, and the gene and protein expression levels were measured via quantitative PCR (qPCR) and Western blotting. The expression level of miRNA-30a-5p was substantially raised in the mimics group ( p < 0.05 ), but extremely low in the inhibitors group ( p < 0.05 ). The mimics group had obviously raised levels of serum aminotransferase (AST), glutamic-pyruvic transaminase (GPT), alkaline phosphatase (ALP), and pulmonary tissue W/D ( p < 0.05 ). Additionally, the expression levels of TNF-α, IL-6, and MPO were notably elevated in the mimics group, while their expression levels showed the opposite conditions in the inhibitors group ( p < 0.05 ). According to the HE staining results, the inhibitors group had arranged orderly cells, while the mimics group exhibited lung injury, pulmonary edema, severe inflammatory response, and alveolar congestion. In the inhibitors group, Cdyn was remarkably elevated, but Pplat and Ppeak declined considerably ( p < 0.05 ). Besides, the inhibitors group exhibited elevated messenger RNA (mRNA) levels of Beclin-1 and LC3, lowered mRNA levels of α-SMA and p62, a raised protein level of Beclin-1, and a markedly decreased protein level of p62 ( p < 0.05 ). Silencing miRNA-30a-5p expression can promote the expression of Beclin-1 to accelerate the occurrence of autophagy, thereby treating pulmonary fibrosis in mice with Streptococcus pneumoniae infection.


2021 ◽  
Author(s):  
Sichao Guo ◽  
Xiaokun Geng ◽  
Hangil Lee ◽  
Yuchuan Ding

Abstract A depressive or hibernation-like effect of chlorpromazine and promethazine (C + P) on brain activity was reported to induce neuroprotection, with or without induced-hypothermia. However, the underlying mechanisms remain unclear. The current study evaluated the pharmacological function of C + P on the inhibition of neuroinflammatory response and inflammasome activation after ischemia/reperfusion. A total of 72 adult male Sprague-Dawley rats were subjected to 2 h middle cerebral artery occlusion (MCAO) followed by 6 or 24 h reperfusion. At the onset of reperfusion, rats received C + P (8 mg/kg) with temperature control. Brain cell death was detected by measuring CD68 and myeloperoxidase (MPO) levels. Inflammasome activation was measured by mRNA levels of NLRP3, IL-1β, and TXNIP, and protein quantities of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Activation of JAK2/STAT3 pathway was detected by the phosphorylation of STAT3 (p-STAT3) and JAK2 (p-JAK2), and the co-localization of p-STAT3 and NLRP3. Activation of the p38 pathway was assessed with the protein levels of p-p38/p38. The mRNA and protein levels of HIF-1α, FoxO1, and p-FoxO1, and the co-localization of p-STAT3 with HIF-1α or FoxO1 were quantitated. As expected, C + P significantly reduced cell death and attenuated the neuroinflammatory response as determined by reduced CD68 and MPO. C + P decreased ischemia-induced inflammasome activation, shown by reduced mRNA and protein expressions of NLRP3, IL-1β, TXNIP, cleaved-Caspase-1, and IL-18. Phosphorylation of JAK2/STAT3 and p38 pathways and the co-localization of p-STAT3 with NLRP3 were also inhibited by C + P. Furthermore, mRNA levels of HIF-1α and FoxO1 were decreased in the C + P group. While C + P inhibited HIF-1α protein expression, it increased FoxO1 phosphorylation, which promoted the exclusion of FoxO1 from the nucleus and inhibited FoxO1 activity. At the same time, C + P reduced the co-localization of p-STAT3 with HIF-1α or FoxO1. In conclusion, C + P treatment conferred neuroprotection in stroke by suppressing neuroinflammation and NLRP3 inflammasome activation. The present study suggests that JAK2/STAT3/p38/HIF-1α/FoxO1 are vital regulators and potential targets for efficacious therapy following ischemic stroke.


Author(s):  
Erin L Grafe ◽  
Christine J Fontaine ◽  
Jennifer D Thomas ◽  
Brian R Christie

Choline is an essential nutrient that is being explored as a nutritional treatment for many neurological disorders. Indeed, choline has already moved to being used in clinical trials for Fetal Alcohol Spectrum Disorders (FASD), and there is increased pressure to better understand its therapeutic mechanism(s) of action. This is particularly true given its potential to directly effect synaptic mechanisms that are believed important for cognitive processes. In the current work we study how the direct application of choline can affect synaptic transmission in hippocampal slices obtained from adolescent (post-natal days 21-28) Sprague-Dawley rats (Rattus norvegicus). The acute administration of choline chloride (2 mM) reliably induced a long-term depression (LTD) of field excitatory postsynaptic potentials (fEPSP) in the DG in vitro. The depression required the involvement of M1-receptors, and the magnitude of the effect was similar in slices obtained from male and female animals. To further study the impact of choline in an animal model of FASD, we examined offspring from dams fed an ethanol-containing diet (35.5% ethanol-derived calories) throughout gestation. In slices from the adolescent animals that experienced prenatal ethanol exposure (PNEE), we found that the choline induced an LTD that uniquely involved the activation of NMDA and M1 receptors. This study provides a novel insight into how choline can modulate hippocampal transmission at the level of the synapse and that it can have unique effects following PNEE.


1992 ◽  
Vol 262 (4) ◽  
pp. L489-L494 ◽  
Author(s):  
S. H. Guttentag ◽  
D. S. Phelps ◽  
W. Stenzel ◽  
J. B. Warshaw ◽  
J. Floros

The content and distribution of the 26-to 38-kDa surfactant protein (SP-A) and its mRNA were determined in fetuses of control and streptozotocin (STZ)-treated Sprague-Dawley rats using immunohistochemistry, RNA blotting, and in situ hybridization. Female rats were treated with 50 mg/kg STZ before mating, and the fetuses were killed at fetal days 18-21 or on neonatal days 1 and 2 (day of birth = end of day 22). SP-A was barely detectable on fetal day 18 in controls and easily detected by fetal day 21. In the STZ group, SP-A was decreased compared with controls at fetal days 18-21. However, by neonatal days 1–2, there were no significant differences in SP-A levels between groups. SP-A mRNA was detectable at fetal day 18 in controls, but it was decreased in the STZ group at day 18-21 (P less than 0.02) and differences were no longer detected by neonatal days 1–2. SP-A and SP-A mRNA accumulated with advancing gestational age in both groups until neonatal days 1–2. The differences in SP-A and SP-A mRNA levels in the two groups diminished with advancing age but remained significant at fetal day 21. These data suggest that STZ-induced diabetes interferes with normal expression of SP-A in the developing fetal lung.


2009 ◽  
Vol 296 (3) ◽  
pp. H728-H734 ◽  
Author(s):  
Randa Hilal-Dandan ◽  
Huaping He ◽  
Jody L. Martin ◽  
Laurence L. Brunton ◽  
Wolfgang H. Dillmann

Downregulation of the sarcoplasmic reticulum calcium ATPase (SERCA2) is associated with diastolic dysfunction in the failing heart. Elevated plasma endothelin-1 (ET) levels are correlated with congestive heart failure suggesting that ET may play a pathophysiological role. We have investigated the ability of ET to regulate SERCA2 gene expression in isolated adult rat ventricular myocytes. We find that ET enhances net protein synthesis by ∼40% but significantly downregulates SERCA2 mRNA expression, time dependently, by ∼30–50%, and the expression of SERCA2 protein by ∼ 50%. In myoyctes, ET binds to ETA receptor that couples to Gq and Gi proteins. Inhibition of Gq-PLC-induced phosphoinositide (PI) hydrolysis with U73122 (1 μM) or inhibition of Gi protein with pertussis toxin (PTX) abolishes the ability of ET to downregulate SERCA2 mRNA gene expression. Further investigation suggests that ET coupling to PTX-sensitive Gi with consequent lowering of cAMP is required for downregulation of SERCA2 mRNA levels. Increasing intracellular cAMP quantity using cAMP-specific PDE inhibitor Ro20-1724 or cAMP analog dibutyryl-cAMP reverses ET-induced downregulation of SERCA2 mRNA levels. The data indicate that, in adult myocytes, ET downregulates SERCA2 mRNA and protein levels, and the effect requires cross-talk between Gq and PTX-sensitive Gi pathways.


2013 ◽  
Vol 50 (3) ◽  
pp. 291-303 ◽  
Author(s):  
Seung Eun Song ◽  
Yong-Woon Kim ◽  
Jong-Yeon Kim ◽  
Dong Hyup Lee ◽  
Jae-Ryong Kim ◽  
...  

This study examined whether IGF-binding protein 5 (IGFBP5) is involved in the high glucose-induced deteriorating effects in cardiac cells. Cardiac fibroblasts and cardiomyocytes were isolated from the hearts of 1- to 3-day-old Sprague Dawley rats. Treatment of fibroblasts with 25 mM glucose increased the number of cells and the mRNA levels of collagen III, matrix metalloproteinase 2 (MMP2), andMMP9. High glucose increased ERK1/2 activity, and the ERK1/2 inhibitor PD98059 suppressed high glucose-mediated fibroblast proliferation and increased collagen III mRNA levels. Whereas high glucose increased both mRNA and protein levels of IGFBP5 in fibroblasts, high glucose did not affect IGFBP5 protein levels in cardiomyocytes. The high glucose-induced increase in IGFBP5 protein levels was inhibited by PD98059 in fibroblasts. While recombinant IGFBP5 increased ERK phosphorylation, cell proliferation, and the mRNA levels of collagen III,MMP2, andMMP9in fibroblasts, IGFBP5 increased c-Jun N-terminal kinase phosphorylation and induced apoptosis in cardiomyocytes. The knockdown of IGFBP5 inhibited high glucose-induced cell proliferation and collagen III mRNA levels in fibroblasts. Although high glucose increased IGF1 levels, IGF1 did not increase IGFBP5 levels in fibroblasts. The hearts of Otsuka Long-Evans Tokushima Fatty rats and the cardiac fibroblasts of streptozotocin-induced diabetic rats showed increased IGFBP5 expression. These results suggest that IGFBP5 mediates high glucose-induced profibrotic effects in cardiac fibroblasts.


Sign in / Sign up

Export Citation Format

Share Document