Evaluation of Cotton Responses to Fomesafen-Based Treatments Applied Preemergence

2018 ◽  
Vol 32 (4) ◽  
pp. 431-438 ◽  
Author(s):  
Xiao Li ◽  
Timothy Grey ◽  
William Vencill ◽  
James Freeman ◽  
Katilyn Price ◽  
...  

AbstractFomesafen provides effective control of glyphosate-resistant Palmer amaranth in cotton. However, cotton seedlings can be injured when fomesafen is applied PRE. Therefore, greenhouse and field experiments were conducted at Athens, GA, and at six locations in Alabama and Georgia in 2013 and 2016 to evaluate cotton growth and yield response to fomesafen applied PRE at 70, 140, 280, 560, 1,120, or 2,240 g ai ha−1, and in combination with pendimethalin, diuron, acetochlor, and fluridone at 1×label rates. Greenhouse bioassays indicated that fomesafen reduced cotton height and dry weight with increasing rate in Cecil sandy loam and Tifton loamy sand but not in Greenville sandy clay loam––possibly as a result of this soil’s higher organic matter (OM) and clay content. Fomesafen applied at 2,240 g ai ha−1 reduced cotton stand by as much as 83% compared to the nontreated check (NTC) at all field locations except Alabama’s Macon and Baldwin counties, and 1,120 g ai ha−1 reduced cotton stand only at Pulaski County, GA, by 52%. Cotton height was reduced by the two highest rates of fomesafen at all locations except Clarke County, GA, and Baldwin County, AL. Injury data indicated more visual injury followed increasing fomesafen rates, and high-rate treatments produced more injury in sandier soils. Cotton yield was unaffected by herbicide treatments at any location, except for the 1,120 g ai ha−1 rate at Pulaski County (49% yield loss compared to NTC), 2,240 g ai ha−1 at Pulaski County (72% yield loss), and Tift County (29% yield loss). These data indicated cotton yield should not be negatively affected by fomesafen applied PRE alone within label rates or in combination with pendimethalin, diuron, acetochlor, and fluridone at 1×label rates, although some visual injury, or stand or height reduction may occur early in the growing season.

2009 ◽  
Vol 23 (4) ◽  
pp. 503-506 ◽  
Author(s):  
John D. Everitt ◽  
J. Wayne Keeling

Field experiments were conducted in Hale Co., TX, in 2005 and 2006 to determine the effects of 2,4-D amine and dicamba applied at varying rates and growth stages on cotton growth and yield, and to correlate cotton injury levels and lint yield reductions. Dicamba or 2,4-D amine was applied at four growth stages including cotyledon to two-leaf, four- to five-leaf, pinhead square, and early bloom. Dicamba and 2,4-D amine were applied at 1/2, 1/20, 1/200, and 1/2000 of the recommended use rate. Crop injury was recorded at 14 days after treatments and late-season, and cotton lint yields were determined. Across all growth stages, 2,4-D caused more crop injury and yield loss than dicamba. Cotton lint was reduced more by later applications (especially pinhead square) and injury underestimated yield loss with 2,4-D. Visual estimates of injury overestimated yield loss when 2,4-D or dicamba was applied early (cotyledon to two leaf) and was not a good predictor of yield loss.


1995 ◽  
Vol 9 (1) ◽  
pp. 91-98 ◽  
Author(s):  
K. Neil Harker ◽  
Robert E. Blackshaw ◽  
Ken J. Kirkland

Field experiments were conducted from 1986 to 1988 at Lacombe and Lethbridge, Alberta and Scott, Saskatchewan to determine growth and yield response of canola to mixtures of ethametsulfuron with specific grass herbicides. Ethametsulfuron did not usually cause canola injury when mixed with sethoxydim. However, ethametsulfuron mixtures with the following grass herbicides listed in decreasing order of injury potential, often caused canola injury and yield loss: haloxyfop > fluazifop > fluazifop-P > quizalofop > quizalofop-P. Canola yield losses were severe in some experiments, ranging from 59% with quizalofop mixtures to 97% with haloxyfop mixtures; in other experiments, the same mixtures did not cause significant yield losses. ‘Tobin,’ aBrassica rapacultivar, tended to be more susceptible to injury than theB. napuscultivars ‘Pivot’ and ‘Westar.’ Canola injury symptoms were consistent with those expected from sulfonylurea herbicides. Therefore, we suggest that specific grass herbicides differentially impair the ability of canola to metabolize ethametsulfuron to inactive forms.


2016 ◽  
Vol 30 (1) ◽  
pp. 123-136 ◽  
Author(s):  
Xiaoyan Ma ◽  
Jinyan Yang ◽  
Hanwen Wu ◽  
Weili Jiang ◽  
Yajie Ma ◽  
...  

Field experiments were conducted in 2013 and 2014 to determine the influence of velvetleaf densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m−1of row on cotton growth and yield. The relationship between velvetleaf density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.44 to 0.48 velvetleaf m−1of row would result in a seed cotton yield loss of 50%. Velvetleaf remained taller and thicker than cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing velvetleaf density. Moreover, velvetleaf interference delayed cotton maturity, especially at velvetleaf densities of 1 to 8 plants m−1of row, and cotton boll number and weight, seed numbers per boll, and lint percentage were also reduced. Fiber quality was not influenced by weed density when analyzed over 2 yr; however, fiber length uniformity and micronaire were adversely affected in 2014. Velvetleaf intraspecific competition resulted in density-dependent effects on weed biomass, ranging from 97 to 204 g plant−1dry weight. Velvetleaf seed production per plant or per square meter was indicated by a logarithmic response. At a density of 1 plant m−1of cotton row, velvetleaf produced approximately 20,000 seeds m−2. The adverse impact of velvetleaf on cotton growth and development identified in this study have indicated the need for effective management of this species when the weed density is greater than 0.25 to 0.5 plant m−1of row and before the weed seed maturity.


MAUSAM ◽  
2021 ◽  
Vol 72 (3) ◽  
pp. 627-634
Author(s):  
ABHISHEK DHIR ◽  
R. K. PAL ◽  
P. K. KINGRA ◽  
S. K. MISHRA ◽  
S. S. SANDHU

The DSSAT module for cotton crop has been evaluated as a tool to predict the crop growth and yield response to microclimatic modifications. In this context, multi-location field experiments were laid out at Bathinda and Faridkot, districts of Punjab during Kharif 2018 with Bt-cotton hybrid RCH 773 BGII and sown at three times, i.e., April 30, May 15 and May 30 with two row orientations (North-South : N-S and East-West : E-W) and three plant spacing’s (67.5 cm × 45.0 cm, 67.5 cm × 60.0 cm and 67.5 cm × 75.0 cm) in factorial split plot design and replicated by three times. The model output in terms of simulated phenology showed close proximity over observed value having R2 of 0.51 and 0.61 at Bathinda and 0.43 and 0.87 at Faridkot anthesis and maturity, respectively. Among study locations, observed and simulated LAI ranged from 2.7 to 3.7 and 1.8 to 3.0. Simulated seed cotton yield was found significantly higher with the crop sown on 30th April (3053 and 3274 kg ha-1) than 30th May sowing (2392 and 2511 kg ha-1) at Bathinda and Faridkot, respectively, which was in good agreement with observed yield having higher value of d-stat (0.84 for Bathinda and 0.89 for Faridkot) and R2 (0.75 for Bathinda and 0.83 for Faridkot). Moreover, higher seed cotton yield was simulated under East-West row direction along with wider plant spacing (67.5 × 75 cm) at both locations. Overall, CROPGRO-cotton model can be used as research tool for the prediction of cotton phenology and yield and to explore site-specific adoption strategies such as appropriate sowing time, row orientation and plant spacing to sustain cotton productivity under changing climatic conditions.


Weed Science ◽  
2006 ◽  
Vol 54 (1) ◽  
pp. 156-165 ◽  
Author(s):  
Konanani B. Liphadzi ◽  
J. Anita Dille

Competitiveness of weeds that survive a PRE herbicide application (escaped weeds) might be altered because of herbicide injury. As a result, potential crop yield loss may be reduced. Field experiments were conducted at Ashland Bottoms, KS, in 2001 and 2002 and at Rossville, KS, in 2002. The objectives were to quantify corn growth and yield response to Palmer amaranth or velvetleaf competition, with or without isoxaflutole (0.03 kg ha−1) or flumetsulam (0.04 kg ha−1) application, and to determine seed production of Palmer amaranth or velvetleaf as affected by PRE herbicide. Palmer amaranth and velvetleaf densities ranged from 0 to 6 and 0 to 32 plants m−1of corn row, respectively. At Ashland Bottoms in 2002, corn height at tasseling decreased with increasing Palmer amaranth (1.58 cm weed−1m−1) and velvetleaf (1.32 cm weed−1m−1) density when no herbicide was applied. With flumetsulam application, each increase in velvetleaf density reduced corn height by 0.4 cm. Escaped Palmer amaranth and velvetleaf were shorter than untreated plants at corn tasseling. At Rossville in 2002, Palmer amaranth that escaped isoxaflutole or flumetsulam application caused 13% corn yield loss (YL) at a density of 3 plants m−1. In contrast, corn YL from untreated Palmer amaranth at the same density was 30%. At Ashland Bottoms in 2002, velvetleaf that escaped flumetsulam caused 3% corn YL at a density of 3 plants m−1compared with 38% YL caused by untreated velvetleaf at the same density. Seed production of Palmer amaranth was independent of density or herbicide treatment, whereas production of velvetleaf seed increased with density, with or without flumetsulam. The study showed that corn YL from both Palmer amaranth and velvetleaf that escaped a PRE herbicide was less than from untreated weeds, but seed production by escaped weeds was similar to that of untreated weeds.


2021 ◽  
Vol 9 (3) ◽  
pp. 204-210
Author(s):  
Collins EGBUCHUA ◽  
Emmanuel Chukudinife ENUJEKE

Field experiments were conducted during 2017 and 2018 cropping seasons at Illah, Delta North ecological zone of Nigeria to investigate the appropriate rates of NPK fertilizer and irrigation intervals in relation to yield response of water melon (Citrullus lunatus). The site had sandy loam texture, low in organic carbon (0.38%), low in total nitrogen (0.064%), available phosphorus (6.83 mgkg-1) and cation exchange capacity (6.74 cmolkg-1). The fertilizer rates were (0:0:0), (50:25:25), (80:40:40), and (120:60:60) KgN, P2O5 and K2O/ha and irrigation regimes of 6:12:18 days. It was a factorial experiment laid out in a Randomized Complete Block Design with three replicates. Results indicated that increase in fertilizer rates from 0:0:0 to 80:40:40 kg/ha significantly increased growth and fruit yield. Further increase to 120:60:60 kg/ha depressed yield. Increase irrigation intervals from 6 -12 days also influenced significantly growth and fruit yield and further increase to 18 days intervals affected negatively the parameters. Interaction effects between fertilizer x irrigation intervals were not significant. Correlation analysis showed that the growth and yield characters were significant and positively correlated with fruit yield. Results indicated that fertilizer rates and 12 days irrigation interval were adequate and recommended for increased production of watermelon in the study area.


1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.


2021 ◽  
Vol 4 (2) ◽  
pp. 1021-1033
Author(s):  
Nguyen Thi Loan ◽  
Tran Thi My Can

To study the effects of cover methods and nitrogen (N) levels on the growth and yield components of tomato Cv. Pear F1, field experiments with a 4x3 factorial design were conducted in the 2019 spring and winter seasons using a randomized complete block design with three replications. The cover methods included four treatments: bare soil (BS), black plastic mulch (BPM), transparent polypropylene row cover (RC), and a combination of BPM and RC (BPMRC) with the RC removed approximately 30 days after transplanting. Nitrogen (N) was applied at three levels (150, 180, and 210 kg N ha-1). Using BPM and RC generally led to an increased air temperature, air humidity, soil moisture, and soil temperature compared to the BS treatment. Higher N rates (180 and 210 kg N ha-1) did not result  in different tomato fruit sizes and fruit weights but positively increased fruit yield and quality (Brix values and fruit dry weight) as compared to the 150 kg N ha-1 addition. The cover methods positively affected the yield components and fruit yield of tomato as well as the fruit characteristics compared to the BS treatment. Using cover materials (BPM and RC) combined with a higher N application significantly increased the yield attributes and fruit yield. The highest fruit yield was achieved under the mulching treatment by black plastic (BPM treatment) combined with a 210 kg N ha-1 application, resulting in 50.90 tons ha-1 in the spring and 58.27 tons ha-1 in the winter.


2016 ◽  
Vol 1 (3) ◽  
pp. 29-35
Author(s):  
Noorwitri Utami ◽  
Lukita Devy ◽  
Arief Arianto

Rodent tuber (Typhonium flagelliforme (Lodd) Blume) is one of the medicinal plants used for anticancer treatment, but the information on the cultivation of the plant is limited. The objectives of this research was to study the effect of light intensity and concentration level of paclobutrazol on growth and yield of rodent tuber. This research was conducted at Puspiptek Serpong, Tangerang Selatan, Indonesia. This experiment arranged in a split plot design with three replications. The main plot is light intensity (35, 55, and 100%). The sub plot is concentration level of paclobutrazol (0, 50, 100, and 150 ppm). Paclobutrazol applied as soil drench at one month after planting. In each application 500 ml solution was used. Variables observed consisted of plant height, number of leaves, leaf length, leaf width, leaf and tuber fresh weight; and leaf and tuber dry weight. Data were analyzed using analysis of variance and Duncan Multiple Range test at 5%. The result showed that interaction between light intensity and paclobutrazol affected the whole observed variable. Dry weight of tuber under 35% light intensity was lower than those in other light intensity for all treatments of paclobutrazol. Full sunlight intensity showed better dry weight in all treatments of paclobutrazol. However the dry weight decreasing significantly at 150 ppm paclobutrazol, but still higher than those in 35% light intensity. Therefore, rodent tuber is better cultivated under full sunlight and 55% light intensity with 100 ppm paclobutrazol.


Sign in / Sign up

Export Citation Format

Share Document