Selected Phase Separation Renders High Strength and Toughness to Polyacrylamide/Alginate Hydrogels with Large-Scale Cross-Linking Zones

Author(s):  
Chongzhi Xu ◽  
Xiansheng Zhang ◽  
Shuo Liu ◽  
Xianwei Zhao ◽  
Cunzhen Geng ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2838
Author(s):  
Andrea Knöller ◽  
Marc Widenmeyer ◽  
Joachim Bill ◽  
Zaklina Burghard

Bacterial cellulose is an organic product of certain bacterias’ metabolism. It differs from plant cellulose by exhibiting a high strength and purity, making it especially interesting for flexible electronics, membranes for water purification, tissue engineering for humans or even as artificial skin and ligaments for robotic devices. However, bacterial cellulose’s naturally slow growth rate has limited its large-scale applicability to date. Titanium (IV) bis-(ammonium lactato) dihydroxide is shown to be a powerful tool to boost the growth rate of bacterial cellulose production by more than one order of magnitude and that it simultaneously serves as a precursor for the Ti4+-coordinated cross-linking of the fibers during membrane formation. The latter results in an almost two-fold increase in Young’s modulus (~18.59 GPa), a more than three-fold increase in tensile strength (~436.70 MPa) and even a four-fold increase in toughness (~6.81 MJ m−³), as compared to the pure bacterial cellulose membranes.



RSC Advances ◽  
2016 ◽  
Vol 6 (74) ◽  
pp. 69966-69972 ◽  
Author(s):  
Yu Guan ◽  
Leishan Shao ◽  
Dongyu Dong ◽  
Fei Wang ◽  
Yuliang Zhang ◽  
...  

Bio-inspired by spider silk, we simultaneously integrated high strength and toughness to PVA/TA films via extensive hydrogen bonding interactions.



Author(s):  
J. Tong ◽  
L. Eyring

There is increasing interest in composites containing zirconia because of their high strength, fracture toughness, and its great influence on the chemical durability in glass. For the zirconia-silica system, monolithic glasses, fibers and coatings have been obtained. There is currently a great interest in designing zirconia-toughened alumina including exploration of the processing methods and the toughening mechanism.The possibility of forming nanocrystal composites by a phase separation method has been investigated in three systems: zirconia-alumina, zirconia-silica and zirconia-titania using HREM. The morphological observations initially suggest that the formation of nanocrystal composites by a phase separation method is possible in the zirconia-alumina and zirconia-silica systems, but impossible in the zirconia-titania system. The separation-produced grain size in silica-zirconia system is around 5 nm and is more uniform than that in the alumina-zirconia system in which the sizes of the small polyhedron grains are around 10 nm. In the titania-zirconia system, there is no obvious separation as was observed in die alumina-zirconia and silica-zirconia system.



Alloy Digest ◽  
1981 ◽  
Vol 30 (7) ◽  

Abstract SAE 8642 is a triple-alloy steel that can be hardened by austenitizing and quenching in oil. This steel has moderate hardenability with relative high strength and toughness, especially in the quenched-and-tempered condition. It is used in a wide range of components, parts and tools; examples are bolts, shafts, gears, wrenches, axles and housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-382. Producer or source: Alloy steel mills and foundries.



2021 ◽  
pp. 51394
Author(s):  
Xinqiu Hong ◽  
Junwei He ◽  
Liming Zou ◽  
Yanli Wang ◽  
Yan Vivian Li


Soft Matter ◽  
2021 ◽  
Author(s):  
Claudio Maggi ◽  
Matteo Paoluzzi ◽  
Andrea Crisanti ◽  
Emanuela Zaccarelli ◽  
Nicoletta Gnan

We perform large-scale computer simulations of an off-lattice two-dimensional model of active particles undergoing a motility-induced phase separation (MIPS) to investigate the systems critical behaviour close to the critical point...



2021 ◽  
Vol 9 (3) ◽  
pp. 105245
Author(s):  
Siti Baizurah Mahat ◽  
R. Omar ◽  
H. Che Man ◽  
A.I. Mohamad Idris ◽  
S.M. Mustapa Kamal ◽  
...  


2021 ◽  
Vol 22 (13) ◽  
pp. 6840
Author(s):  
Natalia Czaplicka ◽  
Szymon Mania ◽  
Donata Konopacka-Łyskawa

The literature indicates the existence of a relationship between rhamnolipids and bacterial biofilm, as well as the ability of selected bacteria to produce rhamnolipids and alginate. However, the influence of biosurfactant molecules on the mechanical properties of biofilms are still not fully understood. The aim of this research is to determine the effect of rhamnolipids concentration, CaCl2 concentration, and ionic cross-linking time on the mechanical properties of alginate hydrogels using a Box–Behnken design. The mechanical properties of cross-linked alginate hydrogels were characterized using a universal testing machine. It was assumed that the addition of rhamnolipids mainly affects the compression load, and the value of this parameter is lower for hydrogels produced with biosurfactant concentration below CMC than for hydrogels obtained in pure water. In contrast, the addition of rhamnolipids in an amount exceeding CMC causes an increase in compression load. In bacterial biofilms, the presence of rhamnolipid molecules does not exceed the CMC value, which may confirm the influence of this biosurfactant on the formation of the biofilm structure. Moreover, rhamnolipids interact with the hydrophobic part of the alginate copolymer chains, and then the hydrophilic groups of adsorbed biosurfactant molecules create additional calcium ion trapping sites.



2019 ◽  
Vol 71 (4) ◽  
pp. 593-607
Author(s):  
Jinjuan Cheng ◽  
Zheming Wang ◽  
Xueping Gan ◽  
Qian Lei ◽  
Zhou Li ◽  
...  


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Qinghua Li ◽  
Jintao Liu ◽  
Shilang Xu

As one-dimensional (1D) nanofiber, carbon nanotubes (CNTs) have been widely used to improve the performance of nanocomposites due to their high strength, small dimensions, and remarkable physical properties. Progress in the field of CNTs presents a potential opportunity to enhance cementitious composites at the nanoscale. In this review, current research activities and key advances on multiwalled carbon nanotubes (MWCNTs) reinforced cementitious composites are summarized, including the effect of MWCNTs on modulus of elasticity, porosity, fracture, and mechanical and microstructure properties of cement-based composites. The issues about the improvement mechanisms, MWCNTs dispersion methods, and the major factors affecting the mechanical properties of composites are discussed. In addition, large-scale production methods of MWCNTs and the effects of CNTs on environment and health are also summarized.



Sign in / Sign up

Export Citation Format

Share Document