Poly(butylene terephthalate) Fiber Assembly with Controllable Pore Size and Gradient Wettability: Potential in Simplifying Cell Culture Procedure

2018 ◽  
Vol 7 (10) ◽  
pp. 1192-1197
Author(s):  
Peilin Jiang ◽  
Yingjun Gao ◽  
Xin Chen ◽  
Qinfei Ke ◽  
Xiangyu Jin ◽  
...  
2010 ◽  
Vol 99 (4) ◽  
pp. 2166-2175 ◽  
Author(s):  
Johanna Linnankoski ◽  
Johanna Mäkelä ◽  
Joni Palmgren ◽  
Timo Mauriala ◽  
Charlotta Vedin ◽  
...  

Author(s):  
James P. Kennedy ◽  
Robert W. Hitchcock

Methods of creating a scaffold for tissue engineering that allow for modification of properties such as pore size, porosity, and anisotropy are essential for tissue engineering applications. For example the pore size and material anisotropy have been shown to affect cardiomyocyte elongation and alignment [1]. Phase-inversion spray polymerization (PISP) is a method for rapidly precipitating polymers onto a surface by depositing the polymer solution simultaneously with a nonsolvent, and may be used to create biocompatible scaffolds of engineered morphological and mechanical properties by varying the solubility of the polymer in the nonsolvent [2]. We report here on the fabrication of scaffolds using different nonsolvents and methods of in-process elongation that allow for control of stiffness, anisotropy ratio, porosity, and in vitro cell culture.


2017 ◽  
Vol 23 (3) ◽  
pp. 534-542 ◽  
Author(s):  
Saahil V. Mehendale ◽  
Liliana F. Mellor ◽  
Michael A. Taylor ◽  
Elizabeth G. Loboa ◽  
Rohan A. Shirwaiker

Purpose This study aims to investigate the effect of three-dimensional (3D)- bioplotted polycaprolactone (PCL) scaffold geometry on the biological and mechanical characteristics of human adipose-derived stem cell (hASC) seeded constructs. Design/methodology/approach Four 3D-bioplotted scaffold disc designs (Ø14.5 × 2 mm) with two levels of strand–pore feature sizes and two strand laydown patterns (0°/90° or 0°/120°/240°) were evaluated for hASC viability, proliferation and construct compressive stiffness after 14 days of in vitro cell culture. Findings Scaffolds with the highest porosity (smaller strand–pore size in 0°/120°/240°) yielded the highest hASC proliferation and viability. Further testing of this design in a 6-mm thick configuration showed that cells were able to penetrate and proliferate throughout the scaffold thickness. The design with the lowest porosity (larger strand–pore size in 0°/90°) had the highest compression modulus after 14 days of culture, but resulted in the lowest hASC viability. The strand laydown pattern by itself did not influence the compression modulus of scaffolds. The 14-day cell culture also did not cause significant changes in compressive properties in any of the four designs. Originality/value hASC hold great potential for musculoskeletal tissue engineering applications because of their relative ease of harvest, abundance and differentiation abilities. This study reports on the effects of 3D-bioplotted scaffold geometry on mechanical and biological characteristics of hASC-seeded PCL constructs. The results provide the basis for future studies which will use this optimal scaffold design to develop constructs for hASC-based osteochondral tissue engineering applications.


1987 ◽  
Vol 28 (2) ◽  
pp. 521-526 ◽  
Author(s):  
Brian A. Gray ◽  
Susanne M. Gollin ◽  
John M. Opitz ◽  
James F. Reynolds

2019 ◽  
Vol 9 (1) ◽  
pp. 37-47
Author(s):  
Quoc-Phong Ho ◽  
The-Duong Tao ◽  
Lien-Huong Huynh ◽  
Meng-Jiy Wang

AbstractThis study was conducted to fabricate scaffold from polylactic acid (PLA) and hydroxyapatite (HA) extracted from waste bovine bone for enhancing both mechanical and biocompatible properties. After pretreatment in dilute NaOH solution, the bone was calcined at 900°C for 6 h, ball milled and converted to HA. Factors that affect the formation of HA were investigated. Experimental results showed that HA particles with crystal size < 100 nm and 99% crystallinity could be obtained at 90°C, pH 11 and 35 mM H3PO4 solution followed by 4 h calcination at 900°C. By using non-solvent induced phase separation method, PLA scaffolds with pore size and surface area of 22.6 μm and 25.7 m2/g, respectively, containing different hydroxyapatite were successfully prepared. Tensile strength of scaffolds increased due to effective support by HA grafted collagen. PLA scaffolds containing HA were more degradable than PLA scaffolds and PLA scaffolds containing HA grafted collagen. Cell culture results showed that cell density increased significantly on porous scaffolds than that on the dense scaffolds. Moreover, cell density also increased significantly on the scaffold containing HA grafted collagen than that on the scaffold with pure HA.


2017 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Nur Kaliwantoro ◽  
Marsetyawan HNE Soesatyo ◽  
Indarto Indarto ◽  
Mohammad Juffrie ◽  
Rini Dharmastiti ◽  
...  

Permeable membranes are widely used in many in vitro studies using cell culture. Some cell leakage are often occurs when using permeable membrane with large pore size. Unfortunately the use of permeable membrane with smaller pore size in permeability studies faces some difficulties due to its small pore size and pore density. Recent study provides the protocol in using permeable membrane with large pore size with smaller cell leakage. Vero cell line (CCL-81, ATCC) was used and culture on polyester permeable membrane with 3 µm pore size. Visualization using inverted microscope was used to analized the cell leakage on the permeable membrane. Parallel plate flow chamber was used to analized the permeability performance of the Vero cell cultured on the permeable membrane. The result showed that the current technique is significant in reducing cell leakage of the cell cultured on large pore size of permeable membrane. The same results were found in using polyester and polycarbonate permeable membrane.


2021 ◽  
pp. 152808372110117
Author(s):  
Guangwu Sun ◽  
Yu Chen ◽  
Yanwen Ruan ◽  
Guanzhi Li ◽  
Wenfeng Hu ◽  
...  

It is widely known that the pore size of a meltblown fiber assembly extensively affects the final applications of its products. We have developed a model for simulating melt-blowing production to investigate the formation mechanism of a fiber assembly. In this study, we calculated the pore size under different production conditions using the model. The predicted results reveal the relationship between the pore size and the production conditions, namely, the air jet pressure, suction pressure, die temperature, polymer flow rate, die to collector distance, and collector speed. The predicted results also verified the experimental trends reported in previous studies. High air jet pressure and die temperature tend to generate smaller pores, while a large polymer flow rate, die to collector distance, and collector movement speed contribute to the production of larger pores in the fiber assembly. In addition, the circularity was predicted in this study to describe the pore shape. The numerical investigation of virtual production is a novel method in which the expected pore size and corresponding production conditions can be easily obtained using a computer with a few keystrokes and mouse clicks.


2004 ◽  
Vol os-13 (3) ◽  
pp. 1558925004os-13 ◽  
Author(s):  
Yogeshwar K. Velu ◽  
Abdelfattah M. Seyam ◽  
Tushar K. Ghosh

Meltblown nonwovens have been produced as 2D web structures for a variety of end uses. Investigation into the development of 3D structures, has led to the integration of meltblown and robotic technology to form the Robotic Fiber Assembly and Control System. The effect of curvature of the collecting surface on the structural properties of the webs such as the diameter and orientation distributions of the fibers and the pore size distribution on the webs has been investigated. The relative frequency of fibers oriented in the machine direction increased significantly when the curvature of the collecting surface increased, while the average pore size of the web decreases due to the increased orientation of fibers in the direction of collection.


Author(s):  
Hai Wang ◽  
Wei Li

Biocompatible polymeric material with well-defined, interconnected porous structure plays an important role in many biomedical applications, such as tissue engineering, controlled drug release, biochemical sensing, and 3D cell culture for drug discovery. In this study, a novel fabrication process for porous polymer is developed using high intensity focused ultrasound. This acoustic method is solvent-free and capable of creating interconnected porous structures with varying topographical features at designed locations. An experimental study on the selective ultrasonic foaming technique is presented in this paper. We investigated the effects of major process variables, including ultrasound power, scanning speed, and gas concentration. Both pore size and interconnectivity of the created porous structures were examined. It was found that the pore size could be controlled with the scanning speed of the ultrasound insonation and that interconnected porous structures could be obtained using a partial saturation procedure. A concentration-dependent gas diffusion model was developed to predict the gas concentration profiles for partially saturated samples. A cell culture study was conducted to examine cell growth behavior in the fabricated porous structures.


Sign in / Sign up

Export Citation Format

Share Document