scholarly journals Antiviral Face Mask Functionalized with Solidified Hand Soap: Low-Cost Infection Prevention Clothing against Enveloped Viruses Such as SARS-CoV-2

ACS Omega ◽  
2021 ◽  
Author(s):  
Alba Cano-Vicent ◽  
Alberto Tuñón-Molina ◽  
Miguel Martí ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
...  
2021 ◽  
Author(s):  
Alba Cano-Vicent ◽  
Alberto Tunon-Molina ◽  
Miguel Marti ◽  
Yukiko Muramoto ◽  
Takeshi Noda ◽  
...  

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that SARS-CoV-2 can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phi 6 in one minute of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.


2021 ◽  
Vol 11 (8) ◽  
pp. 3495
Author(s):  
Shabir Hussain ◽  
Yang Yu ◽  
Muhammad Ayoub ◽  
Akmal Khan ◽  
Rukhshanda Rehman ◽  
...  

The spread of COVID-19 has been taken on pandemic magnitudes and has already spread over 200 countries in a few months. In this time of emergency of COVID-19, especially when there is still a need to follow the precautions and developed vaccines are not available to all the developing countries in the first phase of vaccine distribution, the virus is spreading rapidly through direct and indirect contacts. The World Health Organization (WHO) provides the standard recommendations on preventing the spread of COVID-19 and the importance of face masks for protection from the virus. The excessive use of manual disinfection systems has also become a source of infection. That is why this research aims to design and develop a low-cost, rapid, scalable, and effective virus spread control and screening system to minimize the chances and risk of spread of COVID-19. We proposed an IoT-based Smart Screening and Disinfection Walkthrough Gate (SSDWG) for all public places entrance. The SSDWG is designed to do rapid screening, including temperature measuring using a contact-free sensor and storing the record of the suspected individual for further control and monitoring. Our proposed IoT-based screening system also implemented real-time deep learning models for face mask detection and classification. This module classified individuals who wear the face mask properly, improperly, and without a face mask using VGG-16, MobileNetV2, Inception v3, ResNet-50, and CNN using a transfer learning approach. We achieved the highest accuracy of 99.81% while using VGG-16 and the second highest accuracy of 99.6% using MobileNetV2 in the mask detection and classification module. We also implemented classification to classify the types of face masks worn by the individuals, either N-95 or surgical masks. We also compared the results of our proposed system with state-of-the-art methods, and we highly suggested that our system could be used to prevent the spread of local transmission and reduce the chances of human carriers of COVID-19.


2020 ◽  
pp. 175717742097681
Author(s):  
Amy Lenz ◽  
Genevieve Davis ◽  
Hoda Asmar ◽  
Arby Nahapetian ◽  
John Dingilian ◽  
...  

Overdiagnosis of Clostridioides difficile ( C. difficile) is associated with increased hospital length of stay, antibiotic overuse, unnecessary infection prevention efforts and excess costs. This study evaluated a paper-based bedside C. difficile screening tool on the number of C. difficile laboratory tests performed and number of C. difficile infection (CDI) diagnoses. Nurses used the tool to determine whether stool should be sent for C. difficile testing. The tool provided indications for stool testing. We collected data on the number of C. difficile stool tests performed and CDI diagnoses for nine months before (PreT) and after (PostT) tool implementation in the hospital. We found a 31% reduction in the mean monthly number of C. difficile tests performed (37 PreT to 25 PostT) and a 56% reduction in CDI diagnoses (19 PreT to 8 PostT). This study demonstrates the success of using nurses and a bedside tool to decrease inappropriate C. difficile testing. This intervention has implications for patient management, infection prevention and cost containment. This low-cost paper-based tool may be helpful for the 25% of hospitals in the USA not using clinical decision support in their electronic health record (EHR), as well as for hospitals outside the United States who may not have access to EHRs.


Author(s):  
Suraj Bhat ◽  
Naman Doshi ◽  
Chetanya Dev Bharadwaj ◽  
S. N. Singh ◽  
Younus Patel ◽  
...  
Keyword(s):  
Low Cost ◽  

2021 ◽  
Author(s):  
Elena Kudryashova ◽  
Ashley Zani ◽  
Geraldine Vilmen ◽  
Amit Sharma ◽  
Wuyuan Lu ◽  
...  

Severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is an enveloped virus responsible for the COVID-19 respiratory disease pandemic. While induction of adaptive antiviral immunity via vaccination holds promise for combatting the pandemic, the emergence of new potentially more transmissible and vaccine-resistant variants of SARS-CoV-2 is an ever-present threat. Thus, it remains essential to better understand innate immune mechanisms that are active against the virus. One component of the innate immune system with broad anti-pathogen, including antiviral, activity is a group of cationic immune peptides termed defensins. The defensins' ability to neutralize enveloped and non-enveloped viruses and to inactivate numerous bacterial toxins correlate with their ability to promote the unfolding of thermodynamically pliable proteins. Accordingly, we found that human neutrophil α-defensin HNP1 and retrocyclin RC-101 destabilize SARS-CoV-2 Spike protein and interfere with Spike-mediated membrane fusion and SARS-CoV-2 infection in cell culture. We show that HNP1 binds to Spike with submicromolar affinity. Although binding of HNP1 to serum albumin is more than 20-fold weaker, serum reduces the anti-SARS-CoV-2 activity of HNP1. At high concentrations of HNP1, its ability to inactivate the virus was preserved even in the presence of serum. These results suggest that specific α- and θ-defensins may be valuable tools in developing SARS-CoV-2 infection prevention strategies.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6204
Author(s):  
Naveed Salman ◽  
Muhammad Waqas Khan ◽  
Michael Lim ◽  
Amir Khan ◽  
Andrew H. Kemp ◽  
...  

The use of cloth face coverings and face masks has become widespread in light of the COVID-19 pandemic. This paper presents a method of using low cost wirelessly connected carbon dioxide (CO2) sensors to measure the effects of properly and improperly worn face masks on the concentration distribution of exhaled breath around the face. Four types of face masks are used in two indoor environment scenarios. CO2 as a proxy for exhaled breath is being measured with the Sensirion SCD30 CO2 sensor, and data are being transferred wirelessly to a base station. The exhaled CO2 is measured in four directions at various distances from the head of the subject, and interpolated to create spatial heat maps of CO2 concentration. Statistical analysis using the Friedman’s analysis of variance (ANOVA) test is carried out to determine the validity of the null hypotheses (i.e., distribution of the CO2 is same) between different experiment conditions. Results suggest CO2 concentrations vary little with the type of mask used; however, improper use of the face mask results in statistically different CO2 spatial distribution of concentration. The use of low cost sensors with a visual interpolation tool could provide an effective method of demonstrating the importance of proper mask wearing to the public.


2021 ◽  
Author(s):  
Yo Ishigaki ◽  
Koji Enoki ◽  
Shinji Yokogawa

Within the context of the COVID-19 pandemic, CO2 sensors that measure ventilation conditions and thereby reduce the risk of airborne infection, are gaining increasing attention. We investigated and verified the accuracy of 12 relatively low-cost sensor models that retail for less than $45 and are advertised as infection control measures on a major e-commerce site. Our results indicate that 25% of the tested sensors can be used to identify trends in CO2 concentration, if correctly calibrated. However, 67% of sensors did not respond to the presence of CO2, which suggests that a type of pseudo-technique is used to display the CO2 concentration. We recommend that these sensors are not suitable for infection prevention purposes. Furthermore, 58% of the investigated sensors showed significant responses to the presence of alcohol. Owing to the widespread use of alcohol in preventing the spread of infectious diseases, sensors that react to alcohol can display inaccurate values, resulting in inappropriate ventilation behavior. Therefore, we strongly recommended that these sensors not be used. Based on our results, we offer practical recommendations to the average consumer, who does not have special measuring equipment, on how to identify inaccurate CO2 sensors.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7472
Author(s):  
Marc Lazaro ◽  
Antonio Lazaro ◽  
Ramon Villarino ◽  
David Girbau

The COVID-19 pandemic has highlighted a large amount of challenges to address. To combat the spread of the virus, several safety measures, such as wearing face masks, have been taken. Temperature controls at the entrance of public places to prevent the entry of virus carriers have been shown to be inefficient and inaccurate. This paper presents a smart mask that allows to monitor body temperature and breathing rate. Body temperature is measured by a non-invasive dual-heat-flux system, consisting of four sensors separated from each other with an insulating material. Breathing rate is obtained from the temperature changes within the mask, measured with a thermistor located near the nose. The system communicates by means of long-range (LoRa) backscattering, leading to a reduction in average power consumption. It is designed to establish the relative location of the smart mask from the signal received at two LoRa receivers installed inside and outside an access door. Low-cost LoRa transceivers with WiFi capabilities are used in the prototype to collect information and upload it to a server. Accuracy in body temperature measurements is consistent with measurements made with a thermistor located in the armpit. The system allows checking the correct placement of the mask based on the recorded temperatures and the breathing rate measurements. Besides, episodes of cough can be detected by sudden changes in thermistor temperature.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7142 ◽  
Author(s):  
Bhanu Bhakta Neupane ◽  
Sangita Mainali ◽  
Amita Sharma ◽  
Basant Giri

BackgroundLow-cost face masks made from different cloth materials are very common in developing countries. The cloth masks (CM) are usually double layered with stretchable ear loops. It is common practice to use such masks for months after multiple washing and drying cycles. If a CM is used for long time, the ear loops become stretched. The loop needs to be knotted to make the mask loop fit better on the face. It is not clear how washing and drying and stretching practices change the quality of a CM. The particulate matter (PM) filtering efficiency of a mask depends on multiple parameters, such as pore size, shape, clearance, and pore number density. It is important to understand the effect of these parameters on the filtering efficiency.MethodsWe characterized the surface of twenty different types of CMs using optical image analysis method. The filtering efficiency of selected cloth face masks was measured using the particle counting method. We also studied the effects of washing and drying and stretching on the quality of a mask.ResultsThe pore size of masks ranged from 80 to 500 μm, which was much bigger than particular matter having diameter of 2.5 μm or less (PM2.5) and 10 μm or less (PM10) size. The PM10filtering efficiency of four of the selected masks ranged from 63% to 84%. The poor filtering efficiency may have arisen from larger and open pores present in the masks. Interestingly, we found that efficiency dropped by 20% after the 4th washing and drying cycle. We observed a change in pore size and shape and a decrease in microfibers within the pores after washing. Stretching of CM surface also altered the pore size and potentially decreased the filtering efficiency. As compared to CMs, the less frequently used surgical/paper masks had complicated networks of fibers and much smaller pores in multiple layers in comparison to CMs, and therefore had better filtering efficiency. This study showed that the filtering efficiency of cloth face masks were relatively lower, and washing and drying practices deteriorated the efficiency. We believe that the findings of this study will be very helpful for increasing public awareness and help governmental agencies to make proper guidelines and policies for use of face mask.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Peter Düking ◽  
Philipp Kunz ◽  
Florian A. Engel ◽  
Helena Mastek ◽  
Billy Sperlich

Abstract Objective Portable gas exchange instruments allow the assessment of peak oxygen uptake (V̇O2peak) but are often bulky, expensive and require wearing a face mask thereby limiting their routine application. A newly developed miniaturized headset (VitaScale, Nuremberg, Germany) may overcome these barriers and allow measuring V̇O2peak without applying a face mask. Here we aimed (i) to disclose the technical setup of a headset incorporating a gas and volume sensor to measure volume flow and expired oxygen concentration and (ii) to assess the concurrent criterion-validity of the headset to measure V̇O2peak in 44 individuals exercising on a stationary cycle ergometer in consideration of the test–retest reliability of the criterion measure. Results The coefficient of variation (CV%) while measuring V̇O2peak during incremental cycling with the headset was 6.8%. The CV% for reliability of the criterion measure was 4.0% for V̇O2peak. Based on the present data, the headset might offer a new technology for V̇O2peak measurement due to its low-cost and mask-free design.


Sign in / Sign up

Export Citation Format

Share Document