Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Streptomyces lividans 66

Author(s):  
Yue Zhang ◽  
Kaiyue Yun ◽  
Huamei Huang ◽  
Ran Tu ◽  
Erbing Hua ◽  
...  
2020 ◽  
Author(s):  
Ruigao Song ◽  
Yu Wang ◽  
Qiantao Zheng ◽  
Jing Yao ◽  
Chunwei Cao ◽  
...  

AbstractPrecise and simultaneous acquisition of multiple beneficial alleles in the genome to improve pig performance are pivotal for making elite breeders. Cytidine base editors (CBEs) have emerged as powerful tools for site-specific single nucleotide replacement. Here, we compare the editing efficiency of four CBEs in porcine embryonic cells and embryos to show that hA3A-BE3-Y130F and hA3A-eBE3-Y130F consistently results in higher base-editing efficiency and lower toxic effects to in vitro embryo development. We also show that zygote microinjection of hA3A-BE3-Y130F results in one-step generation of pigs (3BE pigs) harboring C-to-T point mutations, including a stop codon in CD163 and in MSTN and induce beneficial allele in IGF2. The 3BE pigs showed improved growth performance, hip circumference, food conversion rate. Our results demonstrate that CBEs can mediate high throughput genome editing by direct embryo microinjection. Our approach allows immediate introduction of novel alleles for beneficial traits in transgene-free animals for pyramid breeding.


2020 ◽  
Vol 2 ◽  
Author(s):  
Limin Hu ◽  
Olalekan Amoo ◽  
Qianqian Liu ◽  
Shengli Cai ◽  
Miaoshan Zhu ◽  
...  

Rapeseed is one of the world's most important sources of oilseed crops. Single nucleotide substitution is the basis of most genetic variation underpinning important agronomic traits. Therefore, genome-wide and target-specific base editing will greatly facilitate precision plant molecular breeding. In this study, four CBE systems (BnPBE, BnA3A-PBE, BnA3A1-PBE, and BnPBGE14) were modified to achieve cytidine base editing at five target genes in rapeseed. The results indicated that genome editing is achievable in three CBEs systems, among which BnA3A1-PBE had the highest base-editing efficiency (average 29.8% and up to 50.5%) compared to all previous CBEs reported in rapeseed. The editing efficiency of BnA3A1-PBE is ~8.0% and fourfold higher, than those of BnA3A-PBE (averaging 27.6%) and BnPBE (averaging 6.5%), respectively. Moreover, BnA3A1-PBE and BnA3A-PBE could significantly increase the proportion of both the homozygous and biallelic genotypes, and also broaden the editing window compared to BnPBE. The cytidine substitution which occurred at the target sites of both BnaA06.RGA and BnaALS were stably inherited and conferred expected gain-of-function phenotype in the T1 generation (i.e., dwarf phenotype or herbicide resistance for weed control, respectively). Moreover, new alleles or epialleles with expected phenotype were also produced, which served as an important resource for crop improvement. Thus, the improved CBE system in the present study, BnA3A1-PBE, represents a powerful base editor for both gene function studies and molecular breeding in rapeseed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bo Li ◽  
Naixia Ren ◽  
Lele Yang ◽  
Junhao Liu ◽  
Qilai Huang

AbstractCRISPR/Cas9 technology has been widely used for targeted genome modification both in vivo and in vitro. However, an effective method for evaluating genome editing efficiency and screening single-cell clones for desired modification is still lacking. Here, we developed this real time PCR method based on the sensitivity of Taq DNA polymerase to nucleotide mismatch at primer 3′ end during initiating DNA replication. Applications to CRISPR gRNAs targeting EMX1, DYRK1A and HOXB13 genes in Lenti-X 293 T cells exhibited comprehensive advantages. Just in one-round qPCR analysis using genomic DNA from cells underwent CRISPR/Cas9 or BE4 treatments, the genome editing efficiency could be determined accurately and quickly, for indel, HDR as well as base editing. When applied to single-cell clone screening, the genotype of each cell colony could also be determined accurately. This method defined a rigorous and practical way in quantify genome editing events.


2007 ◽  
Vol 189 (9) ◽  
pp. 3359-3368 ◽  
Author(s):  
Matthew A. Croxen ◽  
Peter B. Ernst ◽  
Paul S. Hoffman

ABSTRACT Much of the gene content of the human gastric pathogen Helicobacter pylori (∼1.7-Mb genome) is considered essential. This view is based on the completeness of metabolic pathways, infrequency of nutritional auxotrophies, and paucity of pathway redundancies typically found in bacteria with larger genomes. Thus, genetic analysis of gene function is often hampered by lethality. In the absence of controllable promoters, often used to titrate gene function, we investigated the feasibility of an antisense RNA interference strategy. To test the antisense approach, we targeted alkyl hydroperoxide reductase (AhpC), one of the most abundant proteins expressed by H. pylori and one whose function is essential for both in vitro growth and gastric colonization. Here, we show that antisense ahpC (as-ahpC) RNA expression from shuttle vector pDH37::as-ahpC achieved an ∼72% knockdown of AhpC protein levels, which correlated with increased susceptibilities to hydrogen peroxide, cumene, and tert-butyl hydroperoxides but not with growth efficiency. Compensatory increases in catalase levels were not observed in the knockdowns. Expression of single-copy antisense constructs (expressed under the urease promoter and containing an fd phage terminator) from the rdxA locus of mouse-colonizing strain X47 achieved a 32% knockdown of AhpC protein levels (relative to wild-type X47 levels), which correlated with increased susceptibility to organic peroxides but not with mouse colonization efficiency. Our studies indicate that high levels of AhpC are not required for in vitro growth or for primary gastric colonization. Perhaps AhpC, like catalase, assumes a greater role in combating exogenous peroxides arising from lifelong chronic inflammation. These studies also demonstrate the utility of antisense RNA interference in the evaluation of gene function in H. pylori.


2020 ◽  
Author(s):  
Xi Xiang ◽  
Kunli Qu ◽  
Xue Liang ◽  
Xiaoguang Pan ◽  
Jun Wang ◽  
...  

AbstractThe CRISPR RNA-guided endonucleases Cas9, and Cas9-derived adenine/cytosine base editors (ABE/CBE), have been used in both research and therapeutic applications. However, broader use of this gene editing toolbox is hampered by the great variability of efficiency among different target sites. Here we present TRAP-seq, a versatile and scalable approach in which the CRISPR gRNA expression cassette and the corresponding surrogate site are captured by Targeted Reporter Anchored Positional Sequencing in cells. TRAP-seq can faithfully recapitulate the CRISPR gene editing outcomes introduced to the corresponding endogenous genome site and most importantly enables massively parallel quantification of CRISPR gene editing in cells. We demonstrate the utility of this technology for high-throughput quantification of SpCas9 editing efficiency and indel outcomes for 12,000 gRNAs in human embryonic kidney cells. Using this approach, we also showed that TRAP-seq enables high throughput quantification of both ABE and CBE efficiency at 12,000 sites in cells. This rich amount of ABE/CBE outcome data enable us to reveal several novel nucleotide features (e.g. preference of flanking bases, nucleotide motifs, STOP recoding types) affecting base editing efficiency, as well as designing improved machine learning-based prediction tools for designing SpCas9, ABE and CBE gRNAs of high efficiency and accuracy (>70%). We have integrated all the 12,000 CRISPR gene editing outcomes for SpCas9, ABE and CBE into a CRISPR-centered portal: The Human CRISPR Atlas. This study extends our knowledge on CRISPR gene and base editing, and will facilitate the application and development of CRISPR in both research and therapy.


2021 ◽  
Author(s):  
Wenjian Han ◽  
Wendi Huang ◽  
Miaowei Mao ◽  
Tong Wei ◽  
Yanwen Ye ◽  
...  

ABSTRACTProgrammable RNA editing enables rewriting gene expression without changing genome sequences. Current tools for specific RNA editing dependent on the assembly of guide RNA into an RNA/protein complex, causing delivery barrier and low editing efficiency. We report a new gRNA-free system, RNA editing with individual RNA-binding enzyme (REWIRE), to perform precise base editing with a single engineered protein. This artificial enzyme contains a human-originated programmable PUF domain to specifically recognize RNAs and different deaminase domains to achieve efficient A-to-I or C-to-U editing, which achieved 60-80% editing rate in human cells, with a few non-specific editing sites in the targeted region and a low level off-target effect globally. The RNA-binding domain in REWIREs was further optimized to improve editing efficiency and minimize off-target effects. We applied the REWIREs to correct disease-associated mutations and achieve both types of base editing in mice. As a single-component system originated from human proteins, REWIRE presents a precise and efficient RNA editing platform with broad applicability.


2018 ◽  
Author(s):  
Noah Jakimo ◽  
Pranam Chatterjee ◽  
Lisa Nip ◽  
Joseph M Jacobson

CRISPR-associated (Cas) DNA-endonucleases are remarkably effective tools for genome engineering, but have limited target ranges due to their protospacer adjacent motif (PAM) requirements. We demonstrate a critical expansion of the targetable sequence space for a Type-IIA CRISPR-associated enzyme through identification of the natural 5’-NAA-3’ PAM specificity of a Streptococcus macacae Cas9 (Smac Cas9). We further recombine protein domains between Smac Cas9 and its well-established ortholog from Streptococcus pyogenes (Spy Cas9), as well as an “increased” nucleolytic variant (iSpy Cas9), to achieve consistent mediation of gene modification and base editing. In a comparison to previously reported Cas9 and Cas12a enzymes, we show that our hybrids recognize all adenine dinucleotide PAM sequences and possess robust editing efficiency in human cells.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Guo Li ◽  
Yihan Wang ◽  
Xiangyang Li ◽  
Yuzhe Wang ◽  
Xingxu Huang ◽  
...  

AbstractRNA base editing is potential for cellular function research and genetic diseases treating. There are two main RNA base editors, REPAIR and RESCUE, for in vitro use. REPAIR was developed by fusing inactivated Cas13 (dCas13) with the adenine deaminase domain of ADAR2, which efficiently performs adenosine-to-inosine (A-to-I) RNA editing. RESCUE, which performs both cytidine-to-uridine (C-to-U) and A-to-I RNA editing, was developed by fusing inactivated Cas13 (dCas13) with the evolved ADAR2. However, the relatively low editing efficiency of the RESCUE system limits its broad application. Here, we constructed an enhanced RESCUE (eRESCUE) system; this dPspCas13b-RESCUE-NES system was generated by fusing inactivated PspCas13b with the evolved ADAR2. We determined the endogenous mRNA A-to-I and C-to-U editing efficiency mediated by the dPspCas13b-RESCUE-NES system in HEK-293T cells. This new RNA base editor was then used to induce 177Ser/Gly conversion of inhibitor kappa B kinase β (IKKβ) by changing the genetic code from AGU to GGU. The results showed that the eRESCUE editor mediates more efficient A-to-I and C-to-U RNA editing than the RESCUE RNA editor, as was previously reported. The 177Ser/Gly conversion of IKKβ, accomplished by converting the genetic code from AGU to GGU, resulted in a decrease in the phosphorylation of IKKβ and downregulation of downstream IKKβ-related genes. In summary, we developed a more efficient RNA base editor, eRESCUE, which may provide a useful tool for biomedical research and genetic disease treatment.


Genetics ◽  
2003 ◽  
Vol 165 (1) ◽  
pp. 387-397 ◽  
Author(s):  
Gregorio Segal ◽  
Rentao Song ◽  
Joachim Messing

Abstract In maize, α-zeins, the main protein components of seed stores, are major determinants of nutritional imbalance when maize is used as the sole food source. Mutations like opaque-2 (o2) are used in breeding varieties with improved nutritional quality. However, o2 works in a recessive fashion by affecting the expression of a subset of 22-kD α-zeins, as well as additional endosperm gene functions. Thus, we sought a dominant mutation that could suppress the storage protein genes without interrupting O2 synthesis. We found that maize transformed with RNA interference (RNAi) constructs derived from a 22-kD zein gene could produce a dominant opaque phenotype. This phenotype segregates in a normal Mendelian fashion and eliminates 22-kD zeins without affecting the accumulation of other zein proteins. A system for regulated transgene expression generating antisense RNA also reduced the expression of 22-kD zein genes, but failed to give an opaque phenotype. Therefore, it appears that small interfering RNAs not only may play an important regulatory role during plant development, but also are effective genetic tools for dissecting the function of gene families. Since the dominant phenotype is also correlated with increased lysine content, the new mutant illustrates an approach for creating more nutritious crop plants.


Sign in / Sign up

Export Citation Format

Share Document