Microwave Annealing Effect for Highly Reliable Biosensor: Dual-Gate Ion-Sensitive Field-Effect Transistor Using Amorphous InGaZnO Thin-Film Transistor

2014 ◽  
Vol 6 (24) ◽  
pp. 22680-22686 ◽  
Author(s):  
In-Kyu Lee ◽  
Kwan Hyi Lee ◽  
Seok Lee ◽  
Won-Ju Cho
Nanoscale ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 3613-3620 ◽  
Author(s):  
Nan Cui ◽  
Hang Ren ◽  
Qingxin Tang ◽  
Xiaoli Zhao ◽  
Yanhong Tong ◽  
...  

A fully transparent conformal organic thin-film field-effect transistor array is obtained based on an ultrathin embedded metal-grid electrode and a solution-processed C8-BTBT film.


1985 ◽  
Vol 49 ◽  
Author(s):  
H. Pfleiderer ◽  
W. Kusian

AbstractThe characteristics of a thin-film transistor using an amorphous-silicon film are presented. The appearance of electron and hole channels is made possible by ohmic source and drain contacts. A theoretical model explains the phenomena.


1971 ◽  
Vol 7 (22) ◽  
pp. 661 ◽  
Author(s):  
J.A. Turner ◽  
A.J. Waller ◽  
E. Kelly ◽  
D. Parker

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4213
Author(s):  
Seong-Kun Cho ◽  
Won-Ju Cho

In this study, a highly sensitive and selective sodium ion sensor consisting of a dual-gate (DG) structured silicon nanowire (SiNW) field-effect transistor (FET) as the transducer and a sodium-selective membrane extended gate (EG) as the sensing unit was developed. The SiNW channel DG FET was fabricated through the dry etching of the silicon-on-insulator substrate by using electrospun polyvinylpyrrolidone nanofibers as a template for the SiNW pattern transfer. The selectivity and sensitivity of sodium to other ions were verified by constructing a sodium ion sensor, wherein the EG was electrically connected to the SiNW channel DG FET with a sodium-selective membrane. An extremely high sensitivity of 1464.66 mV/dec was obtained for a NaCl solution. The low sensitivities of the SiNW channel FET-based sodium ion sensor to CaCl2, KCl, and pH buffer solutions demonstrated its excellent selectivity. The reliability and stability of the sodium ion sensor were verified under non-ideal behaviors by analyzing the hysteresis and drift. Therefore, the SiNW channel DG FET-based sodium ion sensor, which comprises a sodium-selective membrane EG, can be applied to accurately detect sodium ions in the analyses of sweat or blood.


Sign in / Sign up

Export Citation Format

Share Document