Non-Nutritive Bioactive Food Constituents of Plants: Tocopherols (Vitamin E)

2003 ◽  
Vol 73 (2) ◽  
pp. 89-94 ◽  
Author(s):  
Elmadfa ◽  
Wagner

An increasing body of data, especially the in vitro and cell culture studies support protecting effects of tocopherols. They indicate that there is a selective tocopherol transport in the human liver with a higher affinity for a-tocopherol, however, they also show that in food, gamma- and delta-tocopherol are a more potent antioxidant than alpha-tocopherol. Tocopherols as alpha group are the key antioxidants in human cell membranes and are also important in protecting the LDL particles. These LDL particles and other similar intermediate markers of oxidative stress show a good response to tocopherol intakes. Published data underline the role of tocopherols as protecting agents against oxidative stress. They therefore allow the assumption that alpha-tocopherol is probably effective in preventing atherosclerosis, although no proven direct relation to the outcome of the disease itself exists.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R Carnevale ◽  
V Cammisotto ◽  
C Nocella ◽  
S Bartimoccia ◽  
D Pastori ◽  
...  

Abstract Background High circulating levels of proprotein convertase subtilisin/kexin 9 (PCSK9) were shown to be predictive of cardiovascular events (CVEs) in patients with atrial fibrillation (AF). Because high PCSK9 plasma levels were significantly correlated with 11-dehydro-thromboxane B2 (11-dh-TxB2), a marker of platelet activation, it is conceivable to hypothesize a direct effect of PCSK9 on platelet activation but the mechanism is still unclear. Purpose We evaluated the association between PCSK9 and platelet activation in FA patients and investigate the possible molecular mechanism involved. Methods According to our previous prospective study, we conducted a post-hoc analysis including 50 patients with baseline PCSK9 below and 50 above the median value of 1200pg/ml. The two groups were balanced for age and sex. In vivo platelet activation was assessed by aggregation (PA), recruitment, plasma thromboxane B2 (TxB2) formation and sPselectin levels. As markers of oxidative stress we used sNox2-dp, H2O2 production, urinary isoprostanes and oxLDL. To asses the role of PCSK9 in platelet activation, we performed an in vitro study with platelets from healthy subjects (n=5) added with PCSK9 concentrations achievable in human circulation (1000pg/ml and 2000pg/ml) measuring PA, TxB2, isoprostanes production, Nox2 activation, H2O2 production, oxLDL, p38, p47 and PLA2 phosphorylation. Results We observed an increased of platelet activation and oxidative stress in patients with PCSK9 levels above median (1200pg/ml) compared to those below (p<0.05). A significant correlation between plasma levels of PCSK9 and markers of platelet activation and markers of oxidative stress were found. In vitro study demonstrated that PCSK9, at the concentration similar to that of patients with CVEs, was able to increase platelet activation act by binding oxLDL receptor. PCSK9 dependent platelet activation is mediated by p47 phosphorylation, a key step in Nox2 activation and is mediated by the PLA2 phosporylation. Conclusions PCSK9, at concentration achievable in patients with CVEs, increased platelet aggregation via oxLDL receptor with a pathway involving Nox2 activation.


2019 ◽  
Vol 41 (26) ◽  
pp. 2472-2483 ◽  
Author(s):  
Marin Kuntic ◽  
Matthias Oelze ◽  
Sebastian Steven ◽  
Swenja Kröller-Schön ◽  
Paul Stamm ◽  
...  

Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. Conclusions E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shiyao Xue ◽  
Hongdong Han ◽  
Shunli Rui ◽  
Mengliu Yang ◽  
Yizhou Huang ◽  
...  

Previous studies on serum fetuin-B (fetuin-like protein IRL685) have investigated its association with T2DM; however, the reason for the variation in serum fetuin-B and its regulatory factors in metabolic disease remain unclear. Here, we evaluated serum fetuin-B levels in women with newly diagnosed MetS and performed multiple interventions to investigate the role of fetuin-B in the pathogenesis of MetS. Serum fetuin-B levels were assessed using ELISA. Bioinformatics analysis was performed to analyze fetuin-B-related genes and signaling pathways. Additionally, oxidative stress parameters were measured in the in vitro study. For subgroup analyses, we performed EHC, OGTT, and treatment with a GLP-1RA to investigate the regulatory factors of serum fetuin-B. We found that in comparison with healthy subjects, serum fetuin-B levels were markedly increased in women with MetS. Further, serum fetuin-B showed a positive correlation with WHR, FAT%, TG, FBG, HbA1c, FIns, HOMA-IR, VAI, and LAP. Bioinformatics analysis revealed that most fetuin-B-related core genes were involved in cholesterol metabolism and fat decomposition. Consistent with this finding, multivariate regression analysis showed that triglyceride content and WHR were independently associated with serum fetuin-B. We also observed that serum fetuin-B levels were markedly elevated in healthy subjects after glucose loading and in women with MetS during EHC. In vitro, overexpression of fetuin-B promoted oxidative stress in HepG2 cell. After 6 months of treatment with a GLP-1RA, serum fetuin-B levels in women with MetS decreased following an improvement in metabolism and insulin sensitivity. Therefore, serum fetuin-B is associated with MetS, which may serve as a biomarker of oxidative stress. This trial is registered with ChiCTR-OCC-11001422.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Martina Horvathova ◽  
Zuzana Orszaghova ◽  
Lucia Laubertova ◽  
Magdalena Vavakova ◽  
Peter Sabaka ◽  
...  

We examinedin vitroantioxidant capacity of polyphenolic extract obtained from the wood of oakQuercus robur(QR), Robuvit, using TEAC (Trolox equivalent antioxidant capacity) method and the effect of its intake on markers of oxidative stress, activity of antioxidant enzymes, and total antioxidant capacity in plasma of 20 healthy volunteers. Markers of oxidative damage to proteins, DNA, and lipids and activities of Cu/Zn-superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined in the erythrocytes. We have found anin vitroantioxidant capacity of Robuvit of 6.37 micromole Trolox equivalent/mg of Robuvit. One month intake of Robuvit in daily dose of 300 mg has significantly decreased the serum level of advanced oxidation protein products (AOPP) and lipid peroxides (LP). Significantly increased activities of SOD and CAT as well as total antioxidant capacity of plasma after one month intake of Robuvit have been shown. In conclusion, we have demonstrated for the first time that the intake of Robuvit is associated with decrease of markers of oxidative stress and increase of activity of antioxidant enzymes and total antioxidant capacity of plasmain vivo.


Sign in / Sign up

Export Citation Format

Share Document