scholarly journals A microscopy technique that images single reaction events in total darkness

Nature ◽  
2021 ◽  
Vol 596 (7871) ◽  
pp. 194-195
Author(s):  
Frédéric Kanoufi ◽  
Neso Sojic
Author(s):  
J. S. Maa ◽  
Thos. E. Hutchinson

The growth of Ag films deposited on various substrate materials such as MoS2, mica, graphite, and MgO has been investigated extensively using the in situ electron microscopy technique. The three stages of film growth, namely, the nucleation, growth of islands followed by liquid-like coalescence have been observed in both the vacuum vapor deposited and ion beam sputtered thin films. The mechanisms of nucleation and growth of silver films formed by ion beam sputtering on the (111) plane of silicon comprise the subject of this paper. A novel mode of epitaxial growth is observed to that seen previously.The experimental arrangement for the present study is the same as previous experiments, and the preparation procedure for obtaining thin silicon substrate is presented in a separate paper.


Author(s):  
Jeff Gelles

Mechanoenzymes are enzymes which use a chemical reaction to power directed movement along biological polymer. Such enzymes include the cytoskeletal motors (e.g., myosins, dyneins, and kinesins) as well as nucleic acid polymerases and helicases. A single catalytic turnover of a mechanoenzyme moves the enzyme molecule along the polymer a distance on the order of 10−9 m We have developed light microscope and digital image processing methods to detect and measure nanometer-scale motions driven by single mechanoenzyme molecules. These techniques enable one to monitor the occurrence of single reaction steps and to measure the lifetimes of reaction intermediates in individual enzyme molecules. This information can be used to elucidate reaction mechanisms and determine microscopic rate constants. Such an approach circumvents difficulties encountered in the use of traditional transient-state kinetics techniques to examine mechanoenzyme reaction mechanisms.


Author(s):  
H.-J. Ou

The understanding of the interactions between the small metallic particles and ceramic surfaces has been studied by many catalyst scientists. We had developed Scanning Reflection Electron Microscopy technique to study surface structure of MgO hulk cleaved surface and the interaction with the small particle of metals. Resolutions of 10Å has shown the periodic array of surface atomic steps on MgO. The SREM observation of the interaction between the metallic particles and the surface may provide a new perspective on such processes.


Author(s):  
Vinod Narang ◽  
P. Muthu ◽  
J.M. Chin ◽  
Vanissa Lim

Abstract Implant related issues are hard to detect with conventional techniques for advanced devices manufactured with deep sub-micron technology. This has led to introduction of site-specific analysis techniques. This paper presents the scanning capacitance microscopy (SCM) technique developed from backside of SOI devices for packaged products. The challenge from backside method includes sample preparation methodology to obtain a thin oxide layer of high quality, SCM parameters optimization and data interpretation. Optimization of plasma etching of buried oxide followed by a new method of growing thin oxide using UV/ozone is also presented. This oxidation method overcomes the limitations imposed due to packaged unit not being able to heat to high temperature for growing thermal oxide. Backside SCM successfully profiled both the n and p type dopants in both cache and core transistors.


Author(s):  
Luis A. Curiel ◽  
Andrew J. Komrowski ◽  
Daniel J.D. Sullivan

Abstract Acoustic Micro Imaging (AMI) is an established nondestructive technique for evaluation of electronic packages. Non-destructive evaluation of electronic packages is often a critical first step in the Failure Analysis (FA) process of semiconductor devices [1]. The molding compound to die surface interface of the Plastic Ball Grid Array (PBGA) and Plastic Quad Flat Pack (PQFP) packages is an important interface to acquire for the FA process. Occasionally, with these packages, the standard acoustic microscopy technique fails to identify defects at the molding compound to die surface interface. The hard to identify defects are found at the edge of the die next to the bond pads or under the bonds wires. This paper will present a technique, Backside Acoustic Micro Imaging (BAMI) analysis, which can better resolve the molding compound to die surface interface at the die edge by sending the acoustic signal through the backside of the PBGA and PQFP packages.


1984 ◽  
Vol 49 (12) ◽  
pp. 2922-2931 ◽  
Author(s):  
Jan Staněk ◽  
Jana Jeřábková ◽  
Jiří Jarý

The preparative advantages of partial methylation with subsequent separation of isomers over standard syntheses of individual derivatives are presented on the case of the methylation of methyl β-D-xylopyranoside (I). All seven possible methyl ethers were isolated in reasonable yields from a single reaction. Literature data concerning methyl 2,3-di-O-methyl-β-D-xylopyranoside (V) and methyl 2,4-di-O-methyl-β-D-xylopyranoside (VI) have been revised.


Author(s):  
Yaiza Cáceres‐Martell ◽  
Daniel Fernández‐Soto ◽  
Carmen Campos‐Silva ◽  
Eva M. García‐Cuesta ◽  
Jose M Casasnovas ◽  
...  

2021 ◽  
Vol 55 (2) ◽  
pp. 331-349
Author(s):  
Hannes Orelma ◽  
Atsushi Tanaka ◽  
Maija Vuoriluoto ◽  
Alexey Khakalo ◽  
Antti Korpela

AbstractTraditional particle board can generate harmful indoor air emissions due to the volatile resin-based compounds present. This study investigated the preparation of sawdust particle board using the novel ionic liquid based fusion approach with [EMIM]OAc. The dissolution parameters were investigated using the thermal optical microscopy technique. The particle board sheets were prepared by hot pressing sawdust in the presence of ionic liquid (IL) ([EMIM]OAc) and subsequently purifying the fusion sawdust matrix from the IL with methanol. The fusion process of the sawdust particles was analysed with SEM and mechanical testing. The raw materials and the produced materials were investigated with elemental analysis, FTIR, and 13C-SS-NMR. IL fusion of the sawdust required a temperature above 150 °C, similar to the glass transition temperature (tg) of lignin. At lower temperatures, strong particle fusion was not obtained. It was observed that the sawdust/IL weight ratio was an important parameter of the fusion process, and a 1:3 weight ratio resulted in the strongest particle boards with a tensile strength of up to 10 MPa, similar to commercial particle boards. The particle fusion process was also studied with a twin-screw extruder. The extrusion enhanced the fusion of the sawdust particles by increasing dissolution of the sawdust particles, which was subsequently seen in elevated tensile strength (20 MPa). The study provides a practical view of how sawdust-based particle board can be manufactured using ionic liquid-based fusion.


2021 ◽  
Vol 22 (14) ◽  
pp. 7279
Author(s):  
Paulina Natalia Osuchowska ◽  
Przemysław Wachulak ◽  
Wiktoria Kasprzycka ◽  
Agata Nowak-Stępniowska ◽  
Maciej Wakuła ◽  
...  

Understanding cancer cell adhesion could help to diminish tumor progression and metastasis. Adhesion mechanisms are currently the main therapeutic target of TNBC-resistant cells. This work shows the distribution and size of adhesive complexes determined with a common fluorescence microscopy technique and soft X-ray contact microscopy (SXCM). The results presented here demonstrate the potential of applying SXCM for imaging cell protrusions with high resolution when the cells are still alive in a physiological buffer. The possibility to observe the internal components of cells at a pristine and hydrated state with nanometer resolution distinguishes SXCM from the other more commonly used techniques for cell imaging. Thus, SXCM can be a promising technique for investigating the adhesion and organization of the actin cytoskeleton in cancer cells.


Sign in / Sign up

Export Citation Format

Share Document