scholarly journals Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma

Oncogene ◽  
2021 ◽  
Author(s):  
Philip Bischoff ◽  
Alexandra Trinks ◽  
Benedikt Obermayer ◽  
Jan Patrick Pett ◽  
Jennifer Wiederspahn ◽  
...  

AbstractRecent developments in immuno-oncology demonstrate that not only cancer cells, but also the tumor microenvironment can guide precision medicine. A comprehensive and in-depth characterization of the tumor microenvironment is challenging since its cell populations are diverse and can be important even if scarce. To identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to ten human lung adenocarcinomas and ten normal control tissues. Our analyses revealed heterogeneous carcinoma cell transcriptomes reflecting histological grade and oncogenic pathway activities, and two distinct microenvironmental patterns. The immune-activated CP²E microenvironment was composed of cancer-associated myofibroblasts, proinflammatory monocyte-derived macrophages, plasmacytoid dendritic cells and exhausted CD8+ T cells, and was prognostically unfavorable. In contrast, the inert N³MC microenvironment was characterized by normal-like myofibroblasts, non-inflammatory monocyte-derived macrophages, NK cells, myeloid dendritic cells and conventional T cells, and was associated with a favorable prognosis. Microenvironmental marker genes and signatures identified in single-cell profiles had progonostic value in bulk tumor profiles. In summary, single-cell RNA profiling of lung adenocarcinoma provides additional prognostic information based on the microenvironment, and may help to predict therapy response and to reveal possible target cell populations for future therapeutic approaches.

2020 ◽  
Author(s):  
Philip Bischoff ◽  
Alexandra Trinks ◽  
Benedikt Obermayer ◽  
Jan Patrick Pett ◽  
Annika Lehmann ◽  
...  

Recent developments in immuno-oncology demonstrate that not only cancer cells, but also features of the tumor microenvironment guide precision medicine. Still, the relationship between tumor and microenvironment remains poorly understood. To overcome this limitation and identify clinically relevant microenvironmental and cancer features, we applied single-cell RNA sequencing to lung adenocarcinomas. While the highly heterogeneous carcinoma cell transcriptomes reflected histological grade and activity of relevant oncogenic pathways, our analysis revealed two distinct microenvironmental patterns. We identified a prognostically unfavorable group of tumors with a microenvironment composed of cancer-associated myofibroblasts, exhausted CD8+ T cells, proinflammatory monocyte-derived macrophages and plasmacytoid dendritic cells (CEP2 pattern) and a prognostically favorable group characterized by myeloid dendritic cells, anti-inflammatory monocyte-derived macrophages, normal-like myofibroblasts, NK cells and conventional T cells (MAN2C pattern). Our results show that single-cell gene expression profiling allows to identify patient subgroups based on the tumor microenvironment beyond cancer cell-centric profiling.


2021 ◽  
Author(s):  
Manman Dai ◽  
Min Feng ◽  
Ziwei Li ◽  
Weisan Chen ◽  
Ming Liao

ABSTRACTChicken peripheral blood lymphocytes (PBLs) exhibit wide-ranging cell types, but current understanding of their subclasses, immune cell classification, and function is limited and incomplete. Previously, we found that viremia caused by avian leukosis virus subgroup J (ALV‐J) was eliminated by 21 days post infection (DPI), accompanied by increased CD8+ T cell ratio in PBLs and low antibody levels. Here we performed single-cell RNA sequencing (scRNA-seq) of PBLs in ALV-J infected and control chickens at 21 DPI to determine chicken PBL subsets and their specific molecular and cellular characteristics, before and after viral infection. Eight cell clusters and their potential marker genes were identified in chicken PBLs. T cell populations (clusters 6 and 7) had the strongest response to ALV-J infection at 21 DPI, based on detection of the largest number of differentially expressed genes (DEGs). T cell populations of clusters 6 and 7 could be further divided into four subsets: activated CD4+ T cells (cluster A0), Th1-like cells (cluster A2), Th2-like cells (cluster A1), and cytotoxic CD8+ T cells. Hallmark genes for each T cell subset response to viral infection were initially identified. Furthermore, pseudotime analysis results suggested that chicken CD4+ T cells could potentially differentiate into Th1-like and Th2-like cells. Moreover, ALV-J infection probably induced CD4+ T cell differentiation into Th1-like cells in which the most immune related DEGs were detected. With respect to the control group, ALV-J infection also had an obvious impact on PBL cell composition. B cells showed inconspicuous response and their numbers decreased in PBLs of the ALV-J infected chickens at 21 DPI. Percentages of cytotoxic Th1-like cells and CD8+ T cells were increased in the T cell population of PBLs from ALV-J infected chicken, which were potentially key mitigating factors against ALV-J infection. More importantly, our results provided a rich resource of gene expression profiles of chicken PBL subsets for a systems-level understanding of their function in homeostatic condition as well as in response to viral infection.


Author(s):  
Gao Qing ◽  
Wu Zhiyuan ◽  
Yu Jinge ◽  
Miao Yuqing ◽  
Chen Zuoguan ◽  
...  

Objectives: Takayasu Arteritis (TA) is a highly specific vascular inflammation and poses threat to patients’ health. Although some patients have accepted medical treatment, their culprit lesions require surgical management (TARSM). This study aimed at dissecting the transcriptomes of peripheral blood mononuclear cells (PBMCs) in these patients and to explore potential clinical markers for TA development and progression.Methods: Peripheral blood were collected from four TA patients requiring surgical management and four age-sex matched healthy donors. Single cell RNA sequencing (scRNA-seq) was adopted to explore the transcriptomic diversity and function of their PBMCs. ELISA, qPCR, and FACS were conducted to validate the results of the analysis.Results: A total of 29918 qualified cells were included for downstream analysis. Nine major cell types were confirmed, including CD14+ monocytes, CD8+ T cells, NK cells, CD4+ T cells, B cells, CD16+ monocytes, megakaryocytes, dendritic cells and plasmacytoid dendritic cells. CD14+ monocytes (50.0 vs. 39.3%, p < 0.05) increased in TA patients, as validated by FACS results. TXNIP, AREG, THBS1, and CD163 increased in TA patients. ILs like IL-6, IL-6STP1, IL-6ST, IL-15, and IL-15RA increased in TA group.Conclusion: Transcriptome heterogeneities of PBMCs in TA patients requiring surgical management were revealed in the present study. In the patients with TA, CD14+ monocytes and gene expressions involved in oxidative stress were increased, indicating a new treatment and research direction in this field.


2020 ◽  
Author(s):  
Erica A. K. DePasquale ◽  
Daniel Schnell ◽  
Kashish Chetal ◽  
Nathan Salomonisi

SUMMARYRetention of multiplet captures in single-cell RNA-sequencing (scRNA-seq) data can hinder identification of discrete or transitional cell populations and associated marker genes. To overcome this challenge, we created DoubletDecon to identify and remove doublets, multiplets of two cells, by using a combination of deconvolution to identify putative doublets and analyses of unique gene expression. Here we provide the protocol for running DoubletDecon on scRNA-seq data.For complete details on the use of this protocol, please see DePasquale et al. (2019) (https://doi.org/10.1016/j.celrep.2019.09.082).GRAPHICAL ABSTRACT


2021 ◽  
Author(s):  
Benjamin Kopecky ◽  
Hao Dun ◽  
Junedh Amrute ◽  
Chieh-Yu Lin ◽  
Andrea Bredemeyer ◽  
...  

Background: Cellular rejection after heart transplantation imparts significant morbidity and mortality. Current immunosuppressive strategies are imperfect, target recipient T-cells, and have a multitude of adverse effects. The innate immune response plays an essential role in the recruitment and activation of T-cells. Targeting the donor innate immune response would represent the earliest interventional opportunity within the immune response cascade. There is limited knowledge regarding donor immune cell types and functions in the setting of cardiac transplantation and no current therapeutics exist for targeting these cell populations. Methods: Using genetic lineage tracing, cell ablation, and conditional gene deletion, we examined donor mononuclear phagocyte diversity and function during acute cellular rejection of transplanted hearts in mice. We performed single cell RNA sequencing on donor and recipient macrophages, dendritic cells, and monocytes at multiple timepoints after transplantation. Based on our single cell RNA sequencing data, we evaluated the functional relevance of donor CCR2+ and CCR2- macrophages using selective cell ablation strategies in donor grafts prior to transplant. Finally, perform functional validation of our single cell derived hypothesis that donor macrophages signal through MYD88 to facilitate cellular rejection. Results: Donor macrophages persisted in the transplanted heart and co-existed with recipient monocyte-derived macrophages. Single-cell RNA sequencing identified donor CCR2+ and CCR2- macrophage populations and revealed remarkable diversity amongst recipient monocytes, macrophages, and dendritic cells. Temporal analysis demonstrated that donor CCR2+ and CCR2- macrophages were transcriptionally distinct, underwent significant morphologic changes, and displayed unique activation signatures after transplantation. While selective depletion of donor CCR2- macrophages reduced allograft survival, depletion of donor CCR2+ macrophages prolonged allograft survival. Pathway analysis revealed that donor CCR2+ macrophages were being activated through MYD88/NF-κβ signaling. Deletion of MYD88 in donor macrophages resulted in reduced antigen presenting cell recruitment, decreased emergence of allograft reactive T-cells, and extended allograft survival. Conclusions: Distinct populations of donor and recipient macrophages co-exist within the transplanted heart. Donor CCR2+ macrophages are key mediators of allograft rejection and inhibition of MYD88 signaling in donor macrophages is sufficient to suppress rejection and extend allograft survival. This highlights the therapeutic potential of donor heart-based interventions.


2021 ◽  
Author(s):  
Aimaiti Yasen ◽  
Wujianan Sun ◽  
Abudusalamu Aini ◽  
Tuerganaili Aji ◽  
Yingmei Shao ◽  
...  

Human cystic echinococcosis, caused by the larval stage of echinococcus granulus sensu lato , has been reported a near-cosmopolitan zoonotic disease. Various infiltrating immune cells gather around the lesion and produce lesion microenvironment, however cellular composition and heterogeneity in hepatic cystic echinococcosis lesion microenvironment are incompletely understood. Here, 81,865 immune cells isolated from peripheral blood, peri-lesion liver tissue, and adjacent normal liver tissue from four cystic echinococcosis patients were profiled using single-cell RNA sequencing. We identified 23 discrete cell populations, and found distinct differences in infiltrating immune cells between tissue environments. Despite the significant similarity between peri-lesion and adjacent normal liver tissue-resident immune cells, the cellular proportions of innate lymphocyte 2 and plasmacytoid dendritic cells were higher in peri-lesion liver tissue. Interestingly, the immunosuppressive gene NFKBIA was up-regulated in these cells. Seven subsets of CD4 + T cell populations were found, and there were more Treg-CD4 + T and Th2-CD4 + T cells in peri-lesion tissue than those in adjacent normal tissue. There was close contact between CD4 + T cells and ILC2 and pDCs cells, which caused up-regulation of genes related to positive immune activity in adjacent normal liver tissue. However, expression of genes related to immunosuppression, especially the immune inhibitory checkpoint gene NKG2A/HLA-E, was obviously higher in peri-lesion tissue, suggesting that cellular interaction resulted in an inhibitory microenvironment in the CE lesion. This work offers new insights into the transcriptional heterogeneity of infiltrating immune cells in hepatic cystic echinococcosis lesion microenvironment at single-cell level, and provides potential target signatures for diagnosis and immunotherapies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
David S. Fischer ◽  
Meshal Ansari ◽  
Karolin I. Wagner ◽  
Sebastian Jarosch ◽  
Yiqi Huang ◽  
...  

AbstractThe in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for ‘reverse phenotyping’. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gen Zou ◽  
Jianzhang Wang ◽  
Xinxin Xu ◽  
Ping Xu ◽  
Libo Zhu ◽  
...  

Abstract Background Endometriosis is a refractory and recurrent disease and it affects nearly 10% of reproductive-aged women and 40% of infertile patients. The commonly accepted theory for endometriosis is retrograde menstruation where endometrial tissues invade into peritoneal cavity and fail to be cleared due to immune dysfunction. Therefore, the comprehensive understanding of immunologic microenvironment of peritoneal cavity deserves further investigation for the previous studies mainly focus on one or several immune cells. Results High-quality transcriptomes were from peritoneal fluid samples of patients with endometriosis and control, and firstly subjected to 10 × genomics single-cell RNA-sequencing. We acquired the single-cell transcriptomes of 10,280 cells from endometriosis sample and 7250 cells from control sample with an average of approximately 63,000 reads per cell. A comprehensive map of overall cells in peritoneal fluid was first exhibited. We unveiled the heterogeneity of immune cells and discovered new cell subtypes including T cell receptor positive (TCR+) macrophages, proliferating macrophages and natural killer dendritic cells in peritoneal fluid, which was further verified by double immunofluorescence staining and flow cytometry. Pseudo-time analysis showed that the response of macrophages to the menstrual debris might follow the certain differentiation trajectory after endometrial tissues invaded into the peritoneal cavity, that is, from antigen presentation to pro-inflammation, then to chemotaxis and phagocytosis. Our analyses also mirrored the dysfunctions of immune cells including decreased phagocytosis and cytotoxic activity and elevated pro-inflammatory and chemotactic effects in endometriosis. Conclusion TCR+ macrophages, proliferating macrophages and natural killer dendritic cells are firstly reported in human peritoneal fluid. Our results also revealed that immune dysfunction happens in peritoneal fluid of endometriosis, which may be responsible for the residues of invaded menstrual debris. It provided a large-scale and high-dimensional characterization of peritoneal microenvironment and offered a useful resource for future development of immunotherapy.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A947-A947
Author(s):  
Diana Graves ◽  
Aleksandar Obradovic ◽  
Michael Korrer ◽  
Yu Wang ◽  
Sohini Roy ◽  
...  

BackgroundUse of anti-PD-1 immune checkpoint inhibitors (ICI) is currently the first line therapy for recurrent/metastatic head and neck squamous cell carcinoma (HNSCC), but critical work remains in identifying factors guiding resistance mechanisms.1 2 While recent studies have specifically implicated cancer-associated fibroblasts (CAFs) as potential mediators of immunotherapy response, the immunoregulatory role of CAFs in head and neck cancer has not been thoroughly explored.3–5MethodsTo determine if there are changes in cell populations associated with anti-PD-1 therapy in head and neck cancer patients, we performed high dimensional single-cell RNA sequencing (scRNA-SEQ) from a neoadjuvant trial of 50 advanced-stage head and neck squamous cell carcinoma (HNSCC) patients that were treated with the anti-PD-1 therapy, nivolumab, for the duration of one month. Tumor specimens were analyzed pre- and post-treatment with single-cell RNA sequencing performed on 4 patients as well as bulk RNA sequencing on 40 patients. Matched scRNA-SEQ data was analyzed using the Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) and Virtual Inference of Protein-activity by Enriched Regulon (VIPER) bioinformatic analysis platform to determine TME cells that correlated with response and resistance to nivolumab.6 For CAF functional studies, surgical tumor specimens were processed and enriched for CAF subtypes, and these were co-cultured with T cells from peripheral blood and tumor infiltrating lymphocytes.ResultsWe identified 14 distinct cell types present in HNSCC patients. Of these 14 cell types, the fibroblast subtype showed significant changes in abundance following nivolumab treatment. We identified 5 distinct clusters of cancer-associated fibroblast subsets (HNCAF-0, 1, 2, 3, and 4) of which, two clusters, HNCAF-0 and HNCAF-3 were predictive of patient response to anti-PD-1 therapy. To determine the significance of these CAF subsets’ function, we isolated HNCAF-0/3 cells from primary HNSCC tumor specimens and co-cultured with primary human T cells. Analysis by flow cytometry showed that HNCAF-0/3 reduced TGFβ-dependent PD-1+TIM-3+ exhaustion of T cells and increased CD103+NKG2A+ resident memory phenotype and cytotoxicity to enhance overall function.ConclusionsTo our knowledge, we are the first to characterize CAF heterogeneity within the head and neck TME and show direct immunostimulatory activity of CAFs. Our findings demonstrate the functional importance of CAF subsets in modulating the immunoregulatory milieu of the human HNSCC, and we have identified clinically actionable CAF subtypes that can be used as a biomarker of response and resistance in future clinical trials.Trial RegistrationNCT03238365ReferencesFerris RL, Blumenschein Jr G, Fayette J, Guigay J, Colevas AD, Licitra L, Harrington K, Kasper S, Vokes EE, Even C, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016;375:1856–1867.Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, Heath K, McClanahan T, Lunceford J, Gause C, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016;17:956–965.Dominguez CX, Muller S, Keerthivasan S, Koeppen H, Hung J, Gierke S, Breart B, Foreman O, Bainbridge TW, Castiglioni A, et al. Single-cell RNA sequencing reveals stromal evolution into LRRC15(+) myofibroblasts as a determinant of patient response to cancer immunotherapy. Cancer Discov 2020;10:232–253.Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2013;110:20212–20217.Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, et al. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov 2020;10:1330–1351.Obradovic A, Chowdhury N, Haake SM, Ager C, Wang V, Vlahos L, Guo XV, Aggen DH, Rathmell WK, Jonasch E, et al. Single-cell protein activity analysis identifies recurrence-associated renal tumor macrophages. Cell 2021;184:2988–3005.Ethics ApprovalPatients provided informed consent for this work. All experimental procedures were approved by the Institutional Review Board of Vanderbilt University Medical Center (IRB: 171883).


2021 ◽  
Author(s):  
Sakthi Rajendran ◽  
Clayton Peterson ◽  
Alessandro Canella ◽  
Yang Hu ◽  
Amy Gross ◽  
...  

Low grade gliomas (LGG) account for about two-thirds of all glioma diagnoses in adolescents and young adults (AYA) and malignant progression of these patients leads to dismal outcomes. Recent studies have shown the importance of the dynamic tumor microenvironment in high-grade gliomas (HGG), yet its role is still poorly understood in low-grade glioma malignant progression. Here, we investigated the heterogeneity of the immune microenvironment using a platelet-derived growth factor (PDGF)-driven RCAS (replication-competent ASLV long terminal repeat with a splice acceptor) glioma model that recapitulates the malignant progression of low to high-grade glioma in humans and also provides a model system to characterize immune cell trafficking and evolution. To illuminate changes in the immune cell landscape during tumor progression, we performed single-cell RNA sequencing on immune cells isolated from animals bearing no tumor (NT), LGG and HGG, with a particular focus on the myeloid cell compartment, which is known to mediate glioma immunosuppression. LGGs demonstrated significantly increased infiltrating T cells, CD4 T cells, CD8 T cells, B cells, and natural killer cells in the tumor microenvironment, whereas HGGs significantly abrogated this infiltration. Our study identified two distinct macrophage clusters in the tumor microenvironment; one cluster appeared to be bone marrow-derived while another was defined by overexpression of Trem2, a marker of tumor associated macrophages. Our data demonstrates that these two distinct macrophage clusters show an immune-activated phenotype (Stat1, Tnf, Cxcl9 and Cxcl10) in LGG which evolves to an immunosuppressive state (Lgals3, Apoc1 and Id2) in HGG that restricts T cell recruitment and activation. We identified CD74 and macrophage migration inhibition factor (MIF) as potential targets for these distinct macrophage populations. Interestingly, these results were mirrored by our analysis of the TCGA dataset, which demonstrated a statistically significant association between CD74 overexpression and decreased overall survival in AYA patients with grade II gliomas. Targeting immunosuppressive myeloid cells and intra-tumoral macrophages within this therapeutic window may ameliorate mechanisms associated with immunosuppression before and during malignant progression.


Sign in / Sign up

Export Citation Format

Share Document