scholarly journals Identification of a TGF-β/SMAD/lnc-UTGF positive feedback loop and its role in hepatoma metastasis

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Meng-Zhi Wu ◽  
Yi-chuan Yuan ◽  
Bi-Yu Huang ◽  
Jin-Xi Chen ◽  
Bin-Kui Li ◽  
...  

AbstractAberrant activation of the TGF-β/SMAD signaling pathway is often observed in hepatocellular carcinoma (HCC). Whether lncRNA regulates the TGF-β/SMAD signaling remains largely unknown. Here, we identified an oncogenic lncRNA that was upregulated in HCC and was transcriptionally induced by TGF-β (named lnc-UTGF, lncRNA upregulated by TGF-β). Upon TGF-β stimulation, SMAD2/3 bound to the lnc-UTGF promoter and activated lnc-UTGF expression. In turn, the TGF-β/SMAD signaling was augmented by overexpressing lnc-UTGF, but was inhibited by silencing lnc-UTGF. Mechanism investigations revealed that lnc-UTGF interacted with the mRNAs of SMAD2 and SMAD4 via complementary base-pairing, resulting in enhanced stability of SMAD2/4 mRNAs. These data suggest a novel TGF-β/SMAD/lnc-UTGF positive feedback circuitry. Subsequent gain- and loss-of-function analyses disclosed that lnc-UTGF promoted the migration and invasion of hepatoma cells, and this effect of lnc-UTGF was attenuated by repressing SMAD2/4 expression or by mutating the SMAD2/4-binding sites in lnc-UTGF. Studies using mouse models further confirmed that in vivo metastasis of hepatoma xenografts was inhibited by silencing lnc-UTGF, but was enhanced by ectopic expression of lnc-UTGF. The lnc-UTGF level was positively correlated with the SMAD2/4 levels in xenografts. Consistently, we detected an association of lnc-UTGF upregulation with increase of SMAD2, SMAD4, and their metastasis effector SNAIL1 in human HCC. And high lnc-UTGF level was also significantly associated with enhanced metastasis potential, advanced TNM stages, and worse recurrence-free survival. Conclusion: there exists a lnc-UTGF-mediated positive feedback loop of the TGF-β signaling and its deregulation promotes hepatoma metastasis. These findings may provide a new therapeutic target for HCC metastasis.

Author(s):  
Jin-Chun Qi ◽  
Zhan Yang ◽  
Tao Lin ◽  
Long Ma ◽  
Ya-Xuan Wang ◽  
...  

Abstract Background Both E2F transcription factor and cyclin-dependent kinases (CDKs), which increase or decrease E2F activity by phosphorylating E2F or its partner, are involved in the control of cell proliferation, and some circRNAs and miRNAs regulate the expression of E2F and CDKs. However, little is known about whether dysregulation among E2Fs, CDKs, circRNAs and miRNAs occurs in human PCa. Methods The expression levels of CDK13 in PCa tissues and different cell lines were determined by quantitative real-time PCR and Western blot analysis. In vitro and in vivo assays were preformed to explore the biological effects of CDK13 in PCa cells. Co-immunoprecipitation anlysis coupled with mass spectrometry was used to identify E2F5 interaction with CDK13. A CRISPR-Cas9 complex was used to activate endogenous CDK13 and circCDK13 expression. Furthermore, the mechanism of circCDK13 was investigated by using loss-of-function and gain-of-function assays in vitro and in vivo. Results Here we show that CDK13 is significantly upregulated in human PCa tissues. CDK13 depletion and overexpression in PCa cells decrease and increase, respectively, cell proliferation, and the pro-proliferation effect of CDK13 is strengthened by its interaction with E2F5. Mechanistically, transcriptional activation of endogenous CDK13, but not the forced expression of CDK13 by its expression vector, remarkably promotes E2F5 protein expression by facilitating circCDK13 formation. Further, the upregulation of E2F5 enhances CDK13 transcription and promotes circCDK13 biogenesis, which in turn sponges miR-212-5p/449a and thus relieves their repression of the E2F5 expression, subsequently leading to the upregulation of E2F5 expression and PCa cell proliferation. Conclusions These findings suggest that CDK13 upregulation-induced formation of the positive feedback loop among circCDK13, miR-212-5p/miR-449a and E2F5 is responsible for PCa development. Targeting this newly identified regulatory axis may provide therapeutic benefit against PCa progression and drug resistance.


2021 ◽  
Vol 11 ◽  
Author(s):  
Tao Guo ◽  
Defeng Liu ◽  
Shihao Peng ◽  
Meng Wang ◽  
Yangyang Li

BackgroundColorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells.Materials and MethodsQuantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP).ResultsMIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1.ConclusionThis study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.


Author(s):  
Ruimin Chang ◽  
Xiaoxiong Xiao ◽  
Yao Fu ◽  
Chunfang Zhang ◽  
Xiaoyan Zhu ◽  
...  

Lung adenocarcinoma (LUAD) is the main histological type of lung cancer, which is the leading cause of cancer-related deaths. Long non-coding RNAs (lncRNAs) were recently revealed to be involved in various cancers. However, the clinical relevance and potential biological roles of most lncRNAs in LUAD remain unclear. Here, we identified a prognosis-related lncRNA ITGB1-DT in LUAD. ITGB1-DT was upregulated in LUAD and high expression of ITGB1-DT was correlated with advanced clinical stages and poor overall survival and disease-free survival. Enhanced expression of ITGB1-DT facilitated LUAD cellular proliferation, migration, and invasion, and also lung metastasis in vivo. Knockdown of ITGB1-DT repressed LUAD cellular proliferation, migration, and invasion. ITGB1-DT interacted with EZH2, repressed the binding of EZH2 to ITGB1 promoter, reduced H3K27me3 levels at ITGB1 promoter region, and therefore activated ITGB1 expression. Through upregulating ITGB1, ITGB1-DT activated Wnt/β-catenin pathway and its downstream target MYC in LUAD. The expressions of ITGB1-DT, ITGB1, and MYC were positively correlated with each other in LUAD tissues. Intriguingly, ITGB1-DT was found as a transcriptional target of MYC. MYC directly transcriptionally activated ITGB1-DT expression. Thus, ITGB1-DT formed a positive feedback loop with ITGB1/Wnt/β-catenin/MYC. The oncogenic roles of ITGB1-DT were reversed by depletion of ITGB1 or inhibition of Wnt/β-catenin pathway. In summary, these findings revealed ITGB1-DT as a prognosis-related and oncogenic lncRNA in LUAD via activating the ITGB1-DT/ITGB1/Wnt/β-catenin/MYC positive feedback loop. These results implicated ITGB1-DT as a potential prognostic biomarker and therapeutic target for LUAD.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jiwei Cheng ◽  
Haibo Ma ◽  
Ming Yan ◽  
Wenqun Xing

AbstractEsophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in the digestive system with a high incidence and poor prognosis. Long non-coding RNAs (LncRNA) have been reported to be closely associated with the occurrence and development of various human cancers. Data from GSE89102 shows an increase of THAP9-AS1 expression in ESCC. However, its functions and mechanisms underlying ESCC progression remain to be investigated. In this study, we found that THAP9-AS1 was overexpressed in ESCC tissues and cells. High THAP9-AS1 expression was positively correlated with tumor size, TNM stage, lymph node metastasis, and worse prognosis. Functionally, depletion of THAP9-AS1 suppressed cell proliferation, migration, and invasion, while enhanced apoptosis in vitro. Consistently, knockdown of THAP9-AS1 inhibited xenograft tumor growth in vivo. Mechanistically, THAP9-AS1 could serve as a competing endogenous RNA (ceRNA) for miR-133b, resulting in the upregulation of SOX4. Reciprocally, SOX4 bound to the promoter region of THAP9-AS1 to activate its transcription. Moreover, the anti-tumor property induced by THAP9-AS1 knockdown was significantly impaired due to miR-133b downregulation or SOX4 overexpression. Taken together, our study reveals a positive feedback loop of THAP9-AS1/miR-133b/SOX4 to facilitate ESCC progression, providing a potential molecular target to fight against ESCC.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Ji Yeon Byun ◽  
Young-So Youn ◽  
Ye-Ji Lee ◽  
Youn-Hee Choi ◽  
So-Yeon Woo ◽  
...  

Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cellsin vitroandin vivoorchestrate the interaction between COX-2/PGE2and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2production. Both NS-398 and COX-2-siRNA, as well as the PGE2receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2induction. Thein vivorelevance of the interaction between the COX-2/PGE2and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages followingin vivoexposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.


2015 ◽  
Vol 212 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Meixiang Yang ◽  
Dan Li ◽  
Zai Chang ◽  
Zhongzhou Yang ◽  
Zhigang Tian ◽  
...  

E4BP4, a circadian protein, is indispensable for NK cell development. It remains largely unknown which signal is required to induce E4BP4 expression and what effects it has during NK cell differentiation. Here, we reveal that PDK1, a kinase upstream of mTOR, connects IL-15 signaling to E4BP4. Early deletion of PDK1 caused a severe loss of NK cells and compromised antitumor activity in vivo. PDK1-deficient NK cells displayed much weaker IL-15–induced mTOR activation and E4BP4 induction, as well as remarkable reduction in CD122, a receptor subunit specifying NK cell responsiveness to IL-15. The phenotypes were partially reversible by ectopic expression of E4BP4 or bypassed activation of mTOR. We also determined that PDK1-mediated metabolic signaling was dispensable for NK cell terminal maturation and survival. Thus, we identify a role for PDK1 signaling as a key mediator in regulating E4BP4 expression during early NK cell development. Our findings underscore the importance of IL-15 self-responsiveness through a positive feedback loop that involves PDK1–mTOR–E4BP4–CD122 signaling.


2020 ◽  
Author(s):  
Jing-hao Jia ◽  
Jing Wang ◽  
Jia-rui Yu ◽  
Peng Gao ◽  
Yan-kun Liu ◽  
...  

Abstract Background In molecular level, competing endogenous RNAs (ceRNAs) regulates other RNA transcripts through competing for shared microRNAs (miRNA). miRNA negatively regulate gene expression at the levels of mRNAs stability and translation suppression. Methods We tested the mRNA level of miR-218-5p and RNASEH1-AS1 in clinical lung squamous cell carcinoma tissues by qRT-PCR. In the exploring of the role of miR-218-5p and RNASEH1-AS1 in the malignant phenotype of NCI-H520 cells, colony formation and MTT assay were used to test the cell viability and proliferation capability, trans-well invasion and wound healing assay were performed to examine the cell migration and invasion. ChIP assay was conducted to confirm the direct interact of POU2F1 and RNASEH1-AS1 promoter. Results In this investigation, we found that LncRNA RNASEH1-AS1 is up-regulated in human lung cancer, and serves as a miRNA sponge for hsa-miR-218-5p in human lung squamous carcinoma cells. lncRNA RNASEH1-AS1 facilitates growth and motility of lung squamous carcinoma cells, while miR-218-5p does the opposite. NET1 and POU2F1 are validated as direct and functional targets of miR-218-5p. The downregulation of miR-218-5p releases the suppression of NET1 and POU2F1. POU2F1 binds directly to the lncRNA-RNASEH1-AS1 promoter and acts as transcription factor to enhance the promoter activity of RNASEH1-AS1. Conclusion Above all, the positive feedback loop of RNASEH1-AS1/ hsa-miR-218-5p/ NET1/ POU2F1 can help us to understand the regulatory mechanism behind genesis and progression of human lung squamous carcinoma, possibly providing new biomarkers for its diagnosis and treatment.


2021 ◽  
Author(s):  
Changhe Hou ◽  
Ming Lu ◽  
Zixiong Lei ◽  
Shuangwu Dai ◽  
Wei Chen ◽  
...  

Abstract Background Numerous studies have demonstrated the important roles of tumor-associated macrophages (TAMs) in osteosarcoma metastasis. In osteosarcoma, higher levels of HMGB1 correlate with osteosarcoma progression. However, whether HMGB1 is involved in the polarization of M2 macrophages into M1 macrophages in osteosarcoma still remains largely unknown. Methods HMGB1 and CD206 mRNA expression was measured by qRT-PCR in osteosarcoma tissues and cells. HMGB1 and RAGE protein expression was measured by western blotting. Osteosarcoma migration was measured using a Transwell and wound-healing assay. Osteosarcoma invasion was measured using a Transwell assay. Macrophage subtypes were detected using flow cytometry. Results HMGB1 is aberrantly overexpressed in osteosarcoma, and positively correlates with the TNM III & IV stages, lymph node metastasis, and distant metastasis. Silencing HMGB1 inhibits migration, invasion, and metastasis-related proteins in osteosarcoma cells. Furthermore, the reduced HMGB1 expression in the conditioned media derived from osteosarcoma cells also induces the polarization of M2 TAMs to M1 TAMs. In addition, silencing HMGB1 inhibits the liver and lung metastases of osteosarcoma and reduces the expression of HMGB1, CD163, and CD206 in vivo experiments. HMGB1 regulates macrophage polarization through RAGE. Interestingly, the polarized M2 macrophages could induce osteosarcoma migration and invasion, which in turn results in activation of HMGB1 expression in osteosarcoma cells to form a positive feedback loop. Conclusions HMGB1 and M2 macrophages enhance osteosarcoma migration, invasion, and metastasis capability through positive feedback regulation. These findings reveal the significance of tumor cell and TAM interaction in the metastatic microenvironment.


Sign in / Sign up

Export Citation Format

Share Document