scholarly journals Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhishek Cukkemane ◽  
Nina Becker ◽  
Mara Zielinski ◽  
Benedikt Frieg ◽  
Nils-Alexander Lakomek ◽  
...  

AbstractChronic mental illnesses (CMIs) pose a significant challenge to global health due to their complex and poorly understood etiologies and hence, absence of causal therapies. Research of the past two decades has revealed dysfunction of the disrupted in schizophrenia 1 (DISC1) protein as a predisposing factor involved in several psychiatric disorders. DISC1 is a multifaceted protein that serves myriads of functions in mammalian cells, for instance, influencing neuronal development and synapse maintenance. It serves as a scaffold hub forming complexes with a variety (~300) of partners that constitute its interactome. Herein, using combinations of structural and biophysical tools, we demonstrate that the C-region of the DISC1 protein is highly polymorphic, with important consequences for its physiological role. Results from solid-state NMR spectroscopy and electron microscopy indicate that the protein not only forms symmetric oligomers but also gives rise to fibrils closely resembling those found in certain established amyloid proteinopathies. Furthermore, its aggregation as studied by isothermal titration calorimetry (ITC) is an exergonic process, involving a negative enthalpy change that drives the formation of oligomeric (presumably tetrameric) species as well as β-fibrils. We have been able to narrow down the β-core region participating in fibrillization to residues 716–761 of full-length human DISC1. This region is absent in the DISC1Δ22aa splice variant, resulting in reduced association with proteins from the dynein motor complex, viz., NDE-like 1 (NDEL1) and lissencephaly 1 (LIS1), which are crucial during mitosis. By employing surface plasmon resonance, we show that the oligomeric DISC1 C-region has an increased affinity and shows cooperativity in binding to LIS1 and NDEL1, in contrast to the noncooperative binding mode exhibited by the monomeric version. Based on the derived structural models, we propose that the association between the binding partners involves two neighboring subunits of DISC1 C-region oligomers. Altogether, our findings highlight the significance of the DISC1 C-region as a crucial factor governing the balance between its physiological role as a multifunctional scaffold protein and aggregation-related aberrations with potential significance for disease.

2021 ◽  
Vol 14 (8) ◽  
pp. 769
Author(s):  
Tiago Santos ◽  
Gilmar F. Salgado ◽  
Eurico J. Cabrita ◽  
Carla Cruz

Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.


2006 ◽  
Vol 26 (14) ◽  
pp. 5249-5258 ◽  
Author(s):  
Vincenzo Coppola ◽  
Colleen A. Barrick ◽  
Sara Bobisse ◽  
Maria Cecilia Rodriguez-Galan ◽  
Michela Pivetta ◽  
...  

ABSTRACT Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.


2002 ◽  
Vol 283 (3) ◽  
pp. F492-F498 ◽  
Author(s):  
Brian S. Cummings ◽  
Jane McHowat ◽  
Rick G. Schnellmann

Phospholipase A2(PLA2) hydrolyzes the sn-2 ester bond in phospholipids, releasing a fatty acid and a lysophospholipid. Recently, a novel 85-kDa membrane-bound-Ca2+-independent PLA2 (iPLA2) was identified in insect and bacterial cells transfected with candidate PLA2 sequences. However, few data exist demonstrating a membrane-bound-iPLA2 in mammalian cells, its subcellular localization, or its physiological role. Herein, we demonstrate the expression of an 85-kDa endoplasmic reticulum (ER)-Ca2+-iPLA2 (ER-iPLA2) in rabbit renal proximal tubule cells (RPTC) that is plasmalogen selective and is inhibited by the specific Ca2+-iPLA2inhibitor bromoenol lactone (BEL). RPTC exposed to tert-butylhydroperoxide for 24 h exhibited 20% oncosis compared with 2% in controls. Inhibition of ER-iPLA2 with BEL before tert-butylhydroperoxide exposure resulted in 50% oncosis. To determine whether this effect was common to oxidants, we tested the ability of BEL to potentiate oncosis induced by cumene hydroperoxide, menadione, duraquinone, cisplatin, and the nonoxidant antimycin A. All oxidants tested produced oncosis after 24 h, and prior inhibition of ER-iPLA2 potentiated oncosis at least twofold. In contrast, inhibition of ER-iPLA2 did not alter antimycin A-induced oncosis. Lipid peroxidation increased from 1.4- to 5.2-fold in RPTC treated with BEL before oxidant exposure, whereas no change was seen in antimycin A-treated RPTC. These results are the first to demonstrate the expression and subcellular localization of an ER-iPLA2. These results also suggest that ER-iPLA2 functions to protect against oxidant-induced lipid peroxidation and oncosis.


2006 ◽  
Vol 84 (11) ◽  
pp. 1081-1095 ◽  
Author(s):  
Mackenzie E. Malo ◽  
Larry Fliegel

In mammalian eukaryotic cells, the Na+/H+ exchanger is a family of membrane proteins that regulates ions fluxes across membranes. Plasma membrane isoforms of this protein extrude 1 intracellular proton in exchange for 1 extracellular sodium. The family of Na+/H+ exchangers (NHEs) consists of 9 known isoforms, NHE1–NHE9. The NHE1 isoform was the first discovered, is the best characterized, and exists on the plasma membrane of all mammalian cells. It contains an N-terminal 500 amino acid membrane domain that transports ions, plus a 315 amino acid C-terminal, the intracellular regulatory domain. The Na+/H+ exchanger is regulated by both post-translational modifications including protein kinase-mediated phosphorylation, plus by a number of regulatory-binding proteins including phosphatidylinositol-4,5-bisphosphate, calcineurin homologous protein, ezrin, radixin and moesin, calmodulin, carbonic anhydrase II, and tescalcin. The Na+/H+ exchanger is involved in a variety of complex physiological and pathological events that include regulation of intracellular pH, cell movement, heart disease, and cancer. This review summarizes recent advances in the understanding of the physiological role and regulation of this protein.


2006 ◽  
Vol 282 (7) ◽  
pp. 5004-5014 ◽  
Author(s):  
James C. Burnett ◽  
Gordon Ruthel ◽  
Christian M. Stegmann ◽  
Rekha G. Panchal ◽  
Tam L. Nguyen ◽  
...  

An efficient research strategy integrating empirically guided, structure-based modeling and chemoinformatics was used to discover potent small molecule inhibitors of the botulinum neurotoxin serotype A light chain. First, a modeled binding mode for inhibitor 2-mercapto-3-phenylpropionyl-RATKML (Ki = 330 nm) was generated, and required the use of a molecular dynamic conformer of the enzyme displaying the reorientation of surface loops bordering the substrate binding cleft. These flexible loops are conformationally variable in x-ray crystal structures, and the model predicted that they were pivotal for providing complementary binding surfaces and solvent shielding for the pseudo-peptide. The docked conformation of 2-mercapto-3-phenylpropionyl-RATKML was then used to refine our pharmacophore for botulinum serotype A light chain inhibition. Data base search queries derived from the pharmacophore were employed to mine small molecule (non-peptidic) inhibitors from the National Cancer Institute's Open Repository. Four of the inhibitors possess Ki values ranging from 3.0 to 10.0 μm. Of these, NSC 240898 is a promising lead for therapeutic development, as it readily enters neurons, exhibits no neuronal toxicity, and elicits dose-dependent protection of synaptosomal-associated protein (of 25 kDa) in a primary culture of embryonic chicken neurons. Isothermal titration calorimetry showed that the interaction between NSC 240898 and the botulinum A light chain is largely entropy-driven, and occurs with a 1:1 stoichiometry and a dissociation constant of 4.6 μm.


2013 ◽  
Vol 6 ◽  
pp. LPI.S10805 ◽  
Author(s):  
Biswajit Mukherjee ◽  
Chowdhury M. Hossain ◽  
Laboni Mondal ◽  
Paramita Paul ◽  
Miltu K. Ghosh

A relationship between obesity and type 2 diabetes is now generally well accepted. This relationship represents several major health hazards including morbid obesity and cardiovascular complications worldwide. Diabetes mellitus is a complex metabolic disorder characterized by impaired insulin release and insulin resistance. Lipids play an important physiological role in skeletal muscle, heart, liver and pancreas. Deregulation of fatty acid metabolism is the main culprit for developing insulin resistance and type 2 diabetes. A predominant predisposing factor to developing obesity, insulin resistance and type 2 diabetes is the permanent elevation of free fatty acids in plasma followed by impaired utilization of lipids by muscle. Diabetes-induced inflammation and oxidative stress have also vital role for development of insulin resistance in diabetic patients. The present review is intended to describe the correlation between lipids, obesity and insulin resistance based on current literature, in order to elucidate involved molecular mechanisms in depth.


2013 ◽  
Vol 55 ◽  
pp. 133-151 ◽  
Author(s):  
G. Vignir Helgason ◽  
Tessa L. Holyoake ◽  
Kevin M. Ryan

Autophagy is a process that takes place in all mammalian cells and ensures homoeostasis and quality control. The term autophagy [self (auto)-eating (phagy)] was first introduced in 1963 by Christian de Duve, who discovered the involvement of lysosomes in the autophagy process. Since then, substantial progress has been made in understanding the molecular mechanism and signalling regulation of autophagy and several reviews have been published that comprehensively summarize these findings. The role of autophagy in cancer has received a lot of attention in the last few years and autophagy modulators are now being tested in several clinical trials. In the present chapter we aim to give a brief overview of recent findings regarding the mechanism and key regulators of autophagy and discuss the important physiological role of mammalian autophagy in health and disease. Particular focus is given to the role of autophagy in cancer prevention, development and in response to anticancer therapy. In this regard, we also give an updated list and discuss current clinical trials that aim to modulate autophagy, alone or in combination with radio-, chemo- or targeted therapy, for enhanced anticancer intervention.


2016 ◽  
Vol 473 (19) ◽  
pp. 3321-3339 ◽  
Author(s):  
Kazuhiko Yamasaki ◽  
Tomoko Yamasaki

Transcription factor SATB1 (special AT-rich sequence binding protein 1) contains multiple DNA-binding domains (DBDs), i.e. two CUT-domain repeats (CUTr1 and CUTr2 from the N-terminus) and a homeodomain, and binds to the matrix attachment region (MAR) of DNA. Although CUTr1 and the homeodomain, but not CUTr2, are known to contribute to DNA binding, different research groups have not reached a consensus on which DBD is responsible for recognition of the target sequence in MAR, 5′-TAATA-3′. Here, we used isothermal titration calorimetry to demonstrate that CUTr1 has binding specificity to this motif, whereas the homeodomain shows affinity for a variety of DNAs without specificity. In line with nonspecific DNA-binding properties of the homeodomain, a mutation of the invariant Asn at position 51 of the homeodomain (typically in contact with the A base in a sequence-specific binding mode) did not affect the binding affinity significantly. The NMR analyses and computational modeling of the homeodomain, however, revealed the tertiary structure and DNA-binding mode that are typical of homeodomains capable of sequence-specific binding. We believe that the lack of highly conserved basic residues in the helix relevant to the base recognition loosens its fitting into the DNA groove and impairs the specific binding. The two DBDs, when fused in tandem, showed strong binding to DNA containing the 5′-TAATA-3′ motif with an affinity constant >108 M−1 and retained nonspecific binding activity. The combination of the sequence-specific and nonspecific DNA-binding modes of SATB1 should be advantageous in a search for target loci during transcriptional regulation.


Sign in / Sign up

Export Citation Format

Share Document