scholarly journals Mitochondrial dysfunction induces radioresistance in colorectal cancer by activating [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling

2021 ◽  
Vol 12 (9) ◽  
Author(s):  
Yingying Shi ◽  
You Wang ◽  
Huangang Jiang ◽  
Xuehua Sun ◽  
Hui Xu ◽  
...  

AbstractMitochondrial retrograde signaling (mito-RTG) triggered by mitochondrial dysfunction plays a potential role in regulating tumor metabolic reprogramming and cellular sensitivity to radiation. Our previous studies showed phos-pyruvate dehydrogenase (p-PDH) and PDK1, which involved in aerobic glycolysis, were positively correlated with radioresistance, but how they initiate and work in the mito-RTG pathway is still unknown. Our further genomics analysis revealed that complex I components were widely downregulated in mitochondrial dysfunction model. In the present study, high expression of p-PDH was found in the complex I deficient cells and induced radioresistance. Mechanistically, complex I defects led to a decreased PDH both in cytoplasm and nucleus through [Ca2+]m-PDP1-PDH axis, and decreased PDH in nucleus promote DNA damage repair (DDR) response via reducing histone acetylation. Meanwhile, NDUFS1 (an important component of the complex I) overexpression could enhance the complex I activity, reverse glycolysis and resensitize cancer cells to radiation in vivo and in vitro. Furthermore, low NDUFS1 and PDH expression were validated to be correlated with poor tumor regression grading (TRG) in local advanced colorectal cancer (CRC) patients underwent neoadjuvant radiotherapy. Here, we propose that the [Ca2+]m-PDP1-PDH-histone acetylation retrograde signaling activated by mitochondrial complex I defects contribute to cancer cell radioresistance, which provides new insight in the understanding of the mito-RTG. For the first time, we reveal that NDUFS1 could be served as a promising predictor of radiosensitivity and modification of complex I function may improve clinical benefits of radiotherapy in CRC.

Oncogenesis ◽  
2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xin Huang ◽  
Yichao Hou ◽  
Xiaoling Weng ◽  
Wenjing Pang ◽  
Lidan Hou ◽  
...  

AbstractExploring novel anticancer drugs to optimize the efficacy may provide a benefit for the treatment of colorectal cancer (CRC). Disulfiram (DSF), as an antialcoholism drug, is metabolized into diethyldithiocarbamate-copper complex (CuET) in vivo, which has been reported to exert the anticancer effects on various tumors in preclinical studies. However, little is known about whether CuET plays an anti-cancer role in CRC. In this study, we found that CuET had a marked effect on suppressing CRC progression both in vitro and in vivo by reducing glucose metabolism. Mechanistically, using RNA-seq analysis, we identified ALDH1A3 as a target gene of CuET, which promoted cell viability and the capacity of clonal formation and inhibited apoptosis in CRC cells. MicroRNA (miR)-16-5p and 15b-5p were shown to synergistically regulate ALDH1A3, which was negatively correlated with both of them and inversely correlated with the survival of CRC patients. Notably, using co-immunoprecipitation followed with mass spectrometry assays, we identified PKM2 as a direct downstream effector of ALDH1A3 that stabilized PKM2 by reducing ubiquitination. Taken together, we disclose that CuET treatment plays an active role in inhibiting CRC progression via miR-16-5p and 15b-5p/ALDH1A3/PKM2 axis–mediated aerobic glycolysis pathway.


Author(s):  
Shuohui Dong ◽  
Shuo Liang ◽  
Zhiqiang Cheng ◽  
Xiang Zhang ◽  
Li Luo ◽  
...  

Abstract Background Acquired resistance of 5-fluorouracil (5-FU) remains a clinical challenge in colorectal cancer (CRC), and efforts to develop targeted agents to reduce resistance have not yielded success. Metabolic reprogramming is a key cancer hallmark and confers several tumor phenotypes including chemoresistance. Glucose metabolic reprogramming events of 5-FU resistance in CRC has not been evaluated, and whether abnormal glucose metabolism could impart 5-FU resistance in CRC is also poorly defined. Methods Three separate acquired 5-FU resistance CRC cell line models were generated, and glucose metabolism was assessed by measuring glucose and lactate utilization, RNA and protein expressions of glucose metabolism-related enzymes and changes of intermediate metabolites of glucose metabolite pool. The protein levels of hypoxia inducible factor 1α (HIF-1α) in primary tumors and circulating tumor cells of CRC patients were detected by immunohistochemistry and immunofluorescence. Stable HIF1A knockdown in cell models was established with a lentiviral system. The influence of both HIF1A gene knockdown and pharmacological inhibition on 5-FU resistance in CRC was evaluated in cell models in vivo and in vitro. Results The abnormality of glucose metabolism in 5-FU-resistant CRC were described in detail. The enhanced glycolysis and pentose phosphate pathway in CRC were associated with increased HIF-1α expression. HIF-1α-induced glucose metabolic reprogramming imparted 5-FU resistance in CRC. HIF-1α showed enhanced expression in 5-FU-resistant CRC cell lines and clinical specimens, and increased HIF-1α levels were associated with failure of fluorouracil analog-based chemotherapy in CRC patients and poor survival. Upregulation of HIF-1α in 5-FU-resistant CRC occurred through non-oxygen-dependent mechanisms of reactive oxygen species-mediated activation of PI3K/Akt signaling and aberrant activation of β-catenin in the nucleus. Both HIF-1α gene knock-down and pharmacological inhibition restored the sensitivity of CRC to 5-FU. Conclusions HIF-1α is a potential biomarker for 5-FU-resistant CRC, and targeting HIF-1a in combination with 5-FU may represent an effective therapeutic strategy in 5-FU-resistant CRC.


2019 ◽  
Vol 316 (3) ◽  
pp. F517-F529 ◽  
Author(s):  
Edward R. Smith ◽  
Belinda Wigg ◽  
Stephen G. Holt ◽  
Timothy D. Hewitson

Histone acetylation is an important modulator of gene expression in fibrosis. This study examined the effect of the pre-eminent fibrogenic cytokine transforming growth factor-β1 (TGF-β1) on histone 3 (H3) acetylation and its regulatory kinetics in renal myofibroblasts. Fibroblasts propagated from rat kidneys after ureteric obstruction were treated with recombinant TGF-β1 or vehicle for 48 h. TGF-β1-induced myofibroblast activation was accompanied by a net decrease in total H3 acetylation, although changes in individual marks were variable. This was paralleled by a generalized reduction in histone acetyltransferases (HAT) and divergent changes in histone deacetylase (HDAC) enzymes at both transcript and protein levels. Globally, this was manifest in a reduction in total HAT activity and increase in HDAC activity. TGF-β1 induced a shift in cellular metabolism from oxidative respiration to aerobic glycolysis, resulting in reduced acetyl-CoA. The reduction in total H3 acetylation could be rescued by providing exogenous citrate or alternative sources of acetyl-CoA without ameliorating changes in HAT/HDAC activity. In conclusion, TGF-β1 produces a metabolic reprogramming in renal fibroblasts, with less H3 acetylation through reduced acetylation, increased deacetylation, and changes in carbon availability. Our results suggest that acetyl-CoA availability predominates over HAT and HDAC activity as a key determinant of H3 acetylation in response to TGF-β1.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Weixing Dai ◽  
Xianke Meng ◽  
Shaobo Mo ◽  
Wenqiang Xiang ◽  
Ye Xu ◽  
...  

Abstract Background Low expression of FOXE1, a member of Forkhead box (FOX) transcription factor family that plays vital roles in cancers, contributes to poor prognosis of colorectal cancer (CRC) patients. However, the underlying mechanism remains unclear. Materials and methods The effects of FOXE1 on the growth of colon cancer cells and the expression of glycolytic enzymes were investigated in vitro and in vivo. Molecular biological experiments were used to reveal the underlying mechanisms of altered aerobic glycolysis. CRC tissue specimens were used to determine the clinical association of ectopic metabolism caused by dysregulated FOXE1. Results FOXE1 is highly expressed in normal colon tissues compared with cancer tissues and low expression of FOXE1 is significantly associated with poor prognosis of CRC patients. Silencing FOXE1 in CRC cell lines dramatically enhanced cell proliferation and colony formation and promoted glucose consumption and lactate production, while enforced expression of FOXE1 manifested the opposite effects. Mechanistically, FOXE1 bound directly to the promoter region of HK2 and negatively regulated its transcription. Furthermore, the expression of FOXE1 in CRC tissues was negatively correlated with that of HK2. Conclusion FOXE1 functions as a critical tumor suppressor in regulating tumor growth and glycolysis via suppressing HK2 in CRC.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun Wang ◽  
Jia-Huan Lu ◽  
Qi-Nian Wu ◽  
Ying Jin ◽  
De-Shen Wang ◽  
...  

Abstract Background Long noncoding RNAs (lncRNAs) play nonnegligible roles in the epigenetic regulation of cancer cells. This study aimed to identify a specific lncRNA that promotes the colorectal cancer (CRC) progression and could be a potential therapeutic target. Methods We screened highly expressed lncRNAs in human CRC samples compared with their matched adjacent normal tissues. The proteins that interact with LINRIS (Long Intergenic Noncoding RNA for IGF2BP2 Stability) were confirmed by RNA pull-down and RNA immunoprecipitation (RIP) assays. The proliferation and metabolic alteration of CRC cells with LINRIS inhibited were tested in vitro and in vivo. Results LINRIS was upregulated in CRC tissues from patients with poor overall survival (OS), and LINRIS inhibition led to the impaired CRC cell line growth. Moreover, knockdown of LINRIS resulted in a decreased level of insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2), a newly found N6-methyladenosine (m6A) ‘reader’. LINRIS blocked K139 ubiquitination of IGF2BP2, maintaining its stability. This process prevented the degradation of IGF2BP2 through the autophagy-lysosome pathway (ALP). Therefore, knockdown of LINRIS attenuated the downstream effects of IGF2BP2, especially MYC-mediated glycolysis in CRC cells. In addition, the transcription of LINRIS could be inhibited by GATA3 in CRC cells. In vivo experiments showed that the inhibition of LINRIS suppressed the proliferation of tumors in orthotopic models and in patient-derived xenograft (PDX) models. Conclusion LINRIS is an independent prognostic biomarker for CRC. The LINRIS-IGF2BP2-MYC axis promotes the progression of CRC and is a promising therapeutic target.


2017 ◽  
Author(s):  
Andreea Manole ◽  
Zane Jaunmuktane ◽  
Iain Hargreaves ◽  
Amelie Pandraud ◽  
Vincenzo Salpietro ◽  
...  

AbstractBrown-Vialetto-Van Laere syndrome (BVVLS) represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter (RFVT) genes, SLC52A2 and SLC52A3, have recently been linked to BVVLS. However, the genetic frequency, neuropathology and downstream consequences of RFVT mutations have previously been undefined. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between RFVT mutations and BVVLS, identifying twenty-two pathogenic mutations in SLC52A2 and SLC52A3, fourteen of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain (ETC), we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. ETC complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila RFVT homologue revealed reduced levels of riboflavin, downstream metabolites, and ETC complex I activity. RFVT knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings indicate mitochondrial dysfunction as a downstream consequence of RFVT gene defects in BVVLS and validate riboflavin esters as a potential therapeutic strategy.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Hua ◽  
Dongliang Wang ◽  
Lin Zhao ◽  
Zhihui Hong ◽  
Kairu Ni ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is a malignancy with considerable morbidity and mortality. Abnormal metabolism is a hallmark of cancer; however, the mechanism of glycolysis regulation in NSCLC progression is not completely understood. Recent studies suggest that some dysregulated long non-coding RNAs (lncRNAs) play important roles in tumor metabolic reprogramming. Methods To identify glycolysis-associated-lncRNAs in NSCLC, we compared RNA-sequencing results between high 18F-fluorodeoxyglucose (FDG)-uptake NSCLC tissues and paired paratumor tissues. The transcript abundance of AL355338 in 80 pairs of clinical samples was evaluated by quantitative real-time PCR assay and fluorescence in situ hybridization. The biological role of AL355338 on NSCLC cells were evaluated by functional experiments in vitro and in vivo. Moreover, RNA pull-down, mass spectrometry and RNA immunoprecipitation (RIP) assays were used to identify the protein interacted with AL355338. Co-immunoprecipitation, in situ proximity ligation assays and western blotting were applied to define the potential downstream pathways of AL355338. Results AL355338 was an upregulated glycolysis-associated lncRNA in NSCLC. Functional assays revealed that AL355338 was critical for promoting aerobic glycolysis and NSCLC progression. Mechanistic investigations showed that AL355338 directly bound with alpha-enolase (ENO1) and enhanced the protein’s stability by modulating its degradation and ubiquitination. A positive correlation was observed between AL355338 and ENO1 in NSCLC, and ENO1 was subsequently confirmed to be responsible for the oncogenic role of AL355338. Furthermore, AL355338 was capable of modulating ENO1/EGFR complex interaction and further activating EGFR-AKT signaling. Conclusions This study indicates that AL355338 confers an aggressive phenotype to NSCLC, and targeting it might be an effective therapeutic strategy.


2018 ◽  
Author(s):  
Nilanjana Chatterjee ◽  
Evangelos Pazarentzos ◽  
Gorjan Hrustanovic ◽  
Luping Lin ◽  
Erik Verschueren ◽  
...  

SUMMARYPTEN is a tumor suppressor that is often inactivated in cancer and possesses both lipid and protein phosphatase activities. We report the metabolic regulator PDHK1 (pyruvate dehydrogenase kinase1) is a synthetic-essential gene in PTEN-deficient cancer and normal cells. The predominant mechanism of PDHK1 regulation and dependency is the PTEN protein phosphatase dephosphorylates NFκ;B activating protein (NKAP) and limits NFκB activation to suppress expression of PDHK1, a NFκB target gene. Loss of the PTEN protein phosphatase upregulates PDHK1 to drive aerobic glycolysis and induce PDHK1 cellular dependence. PTEN-deficient human tumors harbor increased PDHK1, which is a biomarker of decreased patient survival, establishing clinical relevance. This study uncovers a PTEN-regulated signaling pathway and reveals PDHK1 as a potential target in PTEN-deficient cancers.SIGNIFICANCEThe tumor suppressor PTEN is widely inactivated in cancers and tumor syndromes. PTEN antagonizes PI3K/AKT signaling via its lipid phosphatase activity. The modest success of PI3K/AKT inhibition in PTEN-deficient cancer patients provides rationale for identifying other vulnerabilities in PTEN-deficient cancers to improve clinical outcomes. We show that PTEN-deficient cells are uniquely sensitive to PDHK1 inhibition. PTEN and PDHK1 co-suppression reduced colony formation and induced cell deathin vitroand tumor regressionin vivo. PDHK1 levels were high in PTEN-deficient patient tumors and associated with inferior patient survival, establishing clinical relevance. Our study identifies a PTEN-regulated signaling pathway linking the PTEN protein phosphatase to the metabolic regulator PDHK1 and provides a mechanistic basis for PDHK1 targeting in PTEN-deficient cancers.


2020 ◽  
Vol 79 (11) ◽  
pp. 1506-1514
Author(s):  
Felix Renaudin ◽  
Lucie Orliaguet ◽  
Florence Castelli ◽  
François Fenaille ◽  
Aurelie Prignon ◽  
...  

ObjectiveMacrophage activation by monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals mediates an interleukin (IL)-1β-dependent inflammation during gout and pseudo-gout flare, respectively. Since metabolic reprogramming of macrophages goes along with inflammatory responses dependently on stimuli and tissue environment, we aimed to decipher the role of glycolysis and oxidative phosphorylation in the IL-1β-induced microcrystal response.MethodsBriefly, an in vitro study (metabolomics and real-time extracellular flux analysis) on MSU and CPP crystal-stimulated macrophages was performed to demonstrate the metabolic phenotype of macrophages. Then, the role of aerobic glycolysis in IL-1β production was evaluated, as well in vitro as in vivo using 18F-fluorodeoxyglucose positron emission tomography imaging and glucose uptake assay, and molecular approach of glucose transporter 1 (GLUT1) inhibition.ResultsWe observed that MSU and CPP crystals led to a metabolic rewiring toward the aerobic glycolysis pathway explained by an increase in GLUT1 plasma membrane expression and glucose uptake on macrophages. Also, neutrophils isolated from human synovial fluid during gout flare expressed GLUT1 at their plasma membrane more frequently than neutrophils isolated from bloodstream. Both glucose deprivation and treatment with either 2-deoxyglucose or GLUT1 inhibitor suppressed crystal-induced NLRP3 activation and IL-1β production, and microcrystal inflammation in vivo.ConclusionIn conclusion, we demonstrated that GLUT1-mediated glucose uptake is instrumental during the inflammatory IL-1β response induced by MSU and CPP crystals. These findings open new therapeutic paths to modulate crystal-related inflammation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiali Hu ◽  
Cuiyu Chen ◽  
Ruitao Lu ◽  
Yu Zhang ◽  
Yang Wang ◽  
...  

Oncolytic viruses (OVs) are considered a promising therapeutic alternative for cancer. However, despite the development of novel OVs with improved efficacy and tumor selectivity, their limited efficacy as monotherapeutic agents remains a significant challenge. This study extended our previously observed combination effects of propranolol, a nonselective β-blocker, and the T1012G oncolytic virus into colorectal cancer models. A cell viability assay showed that cotreatment could induce synergistic killing effects on human and murine colorectal cell lines. Moreover, cotreatment caused sustained tumor regression compared with T1012G monotherapy or propranolol monotherapy in human HCT116 and murine MC38 tumor models. The propranolol activity was not via a direct effect on viral replication in vitro or in vivo. Western blotting showed that cotreatment significantly enhanced the expression of cleaved caspase-3 in HCT116 and MC38 cells compared with the propranolol or T1012G alone. In addition, propranolol or T1012G treatment induced a 35.06% ± 0.53% or 35.49% ± 2.68% reduction in VEGF secretion in HUVECs (p < 0.01/p < 0.01). Cotreatment further inhibited VEGF secretion compared with the monotherapies (compared with propranolol treatment: 75.06% ± 1.50% decrease, compared with T1012G treatment: 74.91% ± 0.68%; p<0.001, p < 0.001). Consistent with the in vitro results, in vivo data showed that cotreatment could reduce Ki67 and enhance cleaved caspase 3 and CD31 expression in human HCT116 and murine MC38 xenografts. In summary, β-blockers could improve the therapeutic potential of OVs by enhancing oncolytic virus-mediated killing of colorectal cancer cells and colorectal tumors.


Sign in / Sign up

Export Citation Format

Share Document