scholarly journals A gene toolbox for monitoring autophagy transcription

2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Matteo Bordi ◽  
Rossella De Cegli ◽  
Beatrice Testa ◽  
Ralph A. Nixon ◽  
Andrea Ballabio ◽  
...  

AbstractAutophagy is a highly dynamic and multi-step process, regulated by many functional protein units. Here, we have built up a comprehensive and up-to-date annotated gene list for the autophagy pathway, by combining previously published gene lists and the most recent publications in the field. We identified 604 genes and created main categories: MTOR and upstream pathways, autophagy core, autophagy transcription factors, mitophagy, docking and fusion, lysosome and lysosome-related genes. We then classified such genes in sub-groups, based on their functions or on their sub-cellular localization. Moreover, we have curated two shorter sub-lists to predict the extent of autophagy activation and/or lysosomal biogenesis; we next validated the “induction list” by Real-time PCR in cell lines during fasting or MTOR inhibition, identifying ATG14, ATG7, NBR1, ULK1, ULK2, and WDR45, as minimal transcriptional targets. We also demonstrated that our list of autophagy genes can be particularly useful during an effective RNA-sequencing analysis. Thus, we propose our lists as a useful toolbox for performing an informative and functionally-prognostic gene scan of autophagy steps.

2020 ◽  
Author(s):  
Wei Zhou ◽  
Yaxing Zhou ◽  
Guoli Zhu ◽  
Yun Wang ◽  
Zhibiao He ◽  
...  

AbstractBackground and ObjectivesCastor (Ricinus communis L.) is an important non-edible oilseed crop. Lm type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in inflorescence structures and leaf shapes. To better understand the mechanisums underling these differences at the molecular level, we performed comparative transcriptional analysis.Materials and MethodsFull-length transcriptome sequencing and short-read RNA sequencing were employed.ResultsA total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm type female strains and normal amphiprotic strains, respectively. In Lm female strain and normal amphiprotic strains 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed great different gene expression of common and unique transcription factors between the two cultivars. Meanwhile, functional analysis of isoform was conducted. Full-length sequences were used as a reference genome, and short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis.ConclusionsThe results revealed considerable difference and expression diversity between two cultivars, well beyond what was reported in previous studies, likely reflecting the differences in architecture between these two cultivars.HighlightUsing the full-length transcriptome sequencing technology, we performed comparative analysis of transcription factors of two castor cultivars, analyzed alternative splicing events, and identified their lncRNAs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yaxing Zhou ◽  
Guoli Zhu ◽  
Yun Wang ◽  
Zhibiao He ◽  
Wei Zhou

Background and Objectives: Castor (Ricinus communis L.) is an important non-edible oilseed crop. Lm-type female strains and normal amphiprotic strains are important castor cultivars, and are mainly different in their inflorescence structures and leaf shapes. To better understand the mechanisms underlying these differences at the molecular level, we performed a comparative transcriptional analysis.Materials and Methods: Full-length transcriptome sequencing and short-read RNA sequencing were employed.Results: A total of 76,068 and 44,223 non-redundant transcripts were obtained from high-quality transcripts of Lm-type female strains and normal amphiprotic strains, respectively. In Lm-type female strains and normal amphiprotic strains, 51,613 and 20,152 alternative splicing events were found, respectively. There were 13,239 transcription factors identified from the full-length transcriptomes. Comparative analysis showed a great variety of gene expression of common and unique transcription factors between the two cultivars. Meanwhile, a functional analysis of the isoforms was conducted. The full-length sequences were used as a reference genome, and a short-read RNA sequencing analysis was performed to conduct differential gene analysis. Furthermore, the function of DEGs were performed to annotation analysis.Conclusion: The results revealed considerable differences and expression diversity between the two cultivars, well beyond what was reported in previous studies and likely reflecting the differences in architecture between these two cultivars.


Vascular ◽  
2020 ◽  
Vol 28 (5) ◽  
pp. 655-663 ◽  
Author(s):  
Jeongok G Logan ◽  
Sijung Yun ◽  
Yongde Bao ◽  
Emily Farber ◽  
Charles R Farber

Objectives Arterial stiffness is recognized as an important predictor of cardiovascular disease morbidity and mortality, independent of traditional cardiovascular disease risk factors. Given that arterial tissue is not easily accessible, most gene expression studies on arterial stiffness have been conducted on animals or on patients who have undergone by-pass surgeries. In order to obtain a deeper understanding of early changes of arterial stiffness, this study compared transcriptome profiles between healthy adults with higher and lower arterial stiffness. Methods The sample included 20 healthy female adults without cardiovascular disease. Arterial stiffness was measured by carotid-femoral pulse wave velocity, the “gold-standard” measure of central arterial stiffness. Peripheral blood samples collected to PAXgene™ RNA tubes were used for RNA sequencing (RNA-seq). The potential confounding effects of age, body mass index, and mean arterial pressure were controlled for in RNA-seq analysis. To validate RNA-seq results, quantitative real-time PCR (qRT-PCR) was performed for six selected genes. Results The findings demonstrated that genes including CAPN9, IL32, ERAP2, RAB6B, MYBPH, and miRNA626 were down-regulated, and that MOCS1 gene was up-regulated among the people with higher arterial stiffness. Real-time PCR showed that the changes of CAPN9, IL32, ERAP2, and RAB6B were in concordance with RNA-seq data, and confirmed the validity of the gene expression profiles obtained by RNA-seq analysis. Conclusions Previous studies have suggested the potential roles of CAPN9, IL32, and ERAP2 in structural changes of the arterial wall through up-regulation of metalloproteinases. However, the current study showed that CAPN9, IL32, and ERAP2 were down-regulated in the individuals with higher arterial stiffness, compared with those with lower arterial stiffness. The unexpected directions of expression of these genes may indicate an effort to maintain vascular homeostasis during increased arterial stiffness among healthy individuals. Further studies are guaranteed to investigate the roles of CAPN9, IL32, and ERAP2 in regulating arterial stiffness in people with and without cardiovascular disease.


Genes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Yiyun Sun ◽  
Dandan Xu ◽  
Chundong Zhang ◽  
Yitao Wang ◽  
Lian Zhang ◽  
...  

We previously demonstrated that proline-rich protein 11 (PRR11) and spindle and kinetochore associated 2 (SKA2) constituted a head-to-head gene pair driven by a prototypical bidirectional promoter. This gene pair synergistically promoted the development of non-small cell lung cancer. However, the signaling pathways leading to the ectopic expression of this gene pair remains obscure. In the present study, we first analyzed the lung squamous cell carcinoma (LSCC) relevant RNA sequencing data from The Cancer Genome Atlas (TCGA) database using the correlation analysis of gene expression and gene set enrichment analysis (GSEA), which revealed that the PRR11-SKA2 correlated gene list highly resembled the Hedgehog (Hh) pathway activation-related gene set. Subsequently, GLI1/2 inhibitor GANT-61 or GLI1/2-siRNA inhibited the Hh pathway of LSCC cells, concomitantly decreasing the expression levels of PRR11 and SKA2. Furthermore, the mRNA expression profile of LSCC cells treated with GANT-61 was detected using RNA sequencing, displaying 397 differentially expressed genes (203 upregulated genes and 194 downregulated genes). Out of them, one gene set, including BIRC5, NCAPG, CCNB2, and BUB1, was involved in cell division and interacted with both PRR11 and SKA2. These genes were verified as the downregulated genes via RT-PCR and their high expression significantly correlated with the shorter overall survival of LSCC patients. Taken together, our results indicate that GLI1/2 mediates the expression of the PRR11-SKA2-centric gene set that serves as an unfavorable prognostic indicator for LSCC patients, potentializing new combinatorial diagnostic and therapeutic strategies in LSCC.


2021 ◽  
Author(s):  
Lei Zhang ◽  
Yanyong Cheng ◽  
Shihao Wu ◽  
Yufeng Lu ◽  
Zhenyu Xue ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii33-ii34
Author(s):  
Macarena De La Fuente ◽  
Tulay Koru-Sengul ◽  
Deborah Heros ◽  
Feng Miao ◽  
Alain Fernandez Marrero ◽  
...  

Abstract BACKGROUND Glioblastoma is the most common primary malignant brain tumor. Despite multimodality treatment approach, median progression-free survival (PFS) is only 8 months, median overall-survival (OS) 14 months and 5-year survival rate of under 10%. Dendritic cells (DCs) are the professional antigen presenting cells of the immune system. The rationale for sensitizing dendritic cells to a pool of non-selected tumor antigens is based on the marked heterogeneity present within glioblastoma tumor cells. METHODS Phase 1/feasibility study of DC vaccine for recurrent high-grade glioma was conducted. Pooled, non-selected tumor antigens collected via tumor cell lysate were used for DC sensitization. RNA sequencing analysis was performed on all tumor samples. Cytokine levels in serum were detected using a Luminex cytokine panel. RESULTS A total of 20 patients were enrolled onto this study (median age 58yrs, range: 39–74, 65% male). Pathology showed WHO grade IV glioblastoma in 14 (70%) and grade III anaplastic astrocytoma in 6 (30%) patients. IDH wild type in 19 (95%) patients. Treatment emergent adverse events (all grades, regardless of attribution) occurred in more than 15% of the patients (20% fatigue, 15% dizziness, 15% headache, none leading to treatment discontinuation). There were five grade 3–4 and none grade 5 events. One grade 4 event (seizure) probable related to investigational treatment leading to treatment discontinuation. Four grade 3 events (dysphasia, possible related; intracranial hemorrhage unrelated; muscle weakness, unlikely related and hematoma, unrelated). Median PFS was 3.8 months. Median OS was 11 months. RNA sequencing in tumor samples and correlation with cytokine levels in serum is currently been analyzed. CONCLUSION Tumor lysate pulsed DC vaccination demonstrates acceptable safety and tolerability in high-grade glioma patients. Evaluations of integrating molecular profiling RNA sequencing information and cytokine levels to identify potential subset of patients with significant clinical benefit will be provided.


Author(s):  
Ping Huang ◽  
Jieying Zhu ◽  
Yu Liu ◽  
Guihuan Liu ◽  
Ran Zhang ◽  
...  

Abstract Background Four transcription factors, Oct4, Sox2, Klf4, and c-Myc (the Yamanka factors), can reprogram somatic cells to induced pluripotent stem cells (iPSCs). Many studies have provided a number of alternative combinations to the non-Yamanaka factors. However, it is clear that many additional transcription factors that can generate iPSCs remain to be discovered. Methods The chromatin accessibility and transcriptional level of human embryonic stem cells and human urine cells were compared by Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-seq) to identify potential reprogramming factors. Selected transcription factors were employed to reprogram urine cells, and the reprogramming efficiency was measured. Urine-derived iPSCs were detected for pluripotency by Immunofluorescence, quantitative polymerase chain reaction, RNA sequencing and teratoma formation test. Finally, we assessed the differentiation potential of the new iPSCs to cardiomyocytes in vitro. Results ATAC-seq and RNA-seq datasets predicted TEAD2, TEAD4 and ZIC3 as potential factors involved in urine cell reprogramming. Transfection of TEAD2, TEAD4 and ZIC3 (in the presence of Yamanaka factors) significantly improved the reprogramming efficiency of urine cells. We confirmed that the newly generated iPSCs possessed pluripotency characteristics similar to normal H1 embryonic stem cells. We also confirmed that the new iPSCs could differentiate to functional cardiomyocytes. Conclusions In conclusion, TEAD2, TEAD4 and ZIC3 can increase the efficiency of reprogramming human urine cells into iPSCs, and provides a new stem cell sources for the clinical application and modeling of cardiovascular disease. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document