scholarly journals ARRB1 suppresses the activation of hepatic macrophages via modulating endoplasmic reticulum stress in lipopolysaccharide-induced acute liver injury

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yiming Lei ◽  
Sizhe Wan ◽  
Huiling Liu ◽  
Haoxiong Zhou ◽  
Lingjun Chen ◽  
...  

AbstractAcute liver injury (ALI) caused by multiple inflammatory responses is a monocyte-/macrophage-mediated liver injury that is associated with high morbidity and mortality. Liver macrophage activation is a vital event that triggers ALI. However, the mechanism of liver macrophage activation has not been fully elucidated. This study examined the role of β-arrestin1 (ARRB1) in wild-type (WT) and ARRB1-knockout (ARRB1-KO) mouse models of ALI induced by lipopolysaccharide (LPS), and ARRB1-KO mice exhibited more severe inflammatory injury and liver macrophage activation compared to WT mice. We found that LPS treatment reduced the expression level of ARRB1 in Raw264.7 and THP-1 cell lines, and mouse primary hepatic macrophages. Overexpression of ARRB1 in Raw264.7 and THP-1 cell lines significantly attenuated LPS-induced liver macrophage activation, such as transformation in cell morphology and enhanced expression of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), while downregulation of ARRB1 by small interfering RNA and ARRB1 deficiency in primary hepatic macrophages both aggravated macrophage activation. Moreover, overexpression of ARRB1 suppressed LPS-induced endoplasmic reticulum (ER) stress in liver macrophages, and inhibition of ER stress impeded excessive hepatic macrophage activation induced by downregulation of ARRB1. Our data demonstrate that ARRB1 relieves LPS-induced ALI through the ER stress pathway to regulate hepatic macrophage activation and that ARRB1 may be a potential therapeutic target for ALI.

2019 ◽  
Vol 54 (5) ◽  
pp. 465-471 ◽  
Author(s):  
Sheng Wang ◽  
Jiajie Luan ◽  
Xiongwen Lv

ICR mice received ethanol (5 g/kg) by intragastric administration, showing an increase in hepatosomatic index and ALT. These effects were accompanied by increased expression of ER stress-related proteins and exosomal miR-122, PBA intervention can attenuate these changes induced by ethanol provides a potential therapy strategy for acute alcoholic liver injury.


2020 ◽  
Vol 20 (7) ◽  
pp. 548-557
Author(s):  
Wen-Ge Huang ◽  
Jun Wang ◽  
Yu-Juan Liu ◽  
Hong-Xia Wang ◽  
Si-Zhen Zhou ◽  
...  

Background: Multidrug-resistance protein (MRP) 2 is a key membrane transporter that is expressed on hepatocytes and regulated by nuclear factor kappa B (NF-κB). Interestingly, endoplasmic reticulum (ER) stress is closely associated with liver injury and the activation of NF-κB signaling. Objective: Here, we investigated the impact of ER stress on MRP2 expression and the functional involvement of MRP2 in acute liver injury. Methods: ER stress, MRP2 expression, and hepatocyte injury were analyzed in a carbon tetrachloride (CCl4)-induced mouse model of acute liver injury and in a thapsigargin (TG)-induced model of ER stress. Results: CCl4 and TG induced significant ER stress, MRP2 protein expression and NF- κB activation in mice and LO2 cells (P < 0.05). Pretreatment with ER stress inhibitor 4- phenyl butyric acid (PBA) significantly mitigated CCl4 and TG-induced ER stress and MRP2 protein expression (P < 0.05). Moreover, pretreatment with pyrrolidine dithiocarbamic acid (PDTC; NF-κB inhibitor) significantly inhibited CCl4-induced NF-κB activation and reduced MRP2 protein expression (1±0.097 vs. 0.623±0.054; P < 0.05). Furthermore, hepatic downregulation of MRP2 expression significantly increased CCl4- induced ER stress, apoptosis, and liver injury. Conclusion: ER stress enhances intrahepatic MRP2 protein expression by activating NF-κB. This increase in MRP2 expression mitigates ER stress and acute liver injury.


2020 ◽  
Vol 168 (4) ◽  
pp. 365-374
Author(s):  
Shaoxun Li ◽  
Shuanghong Jin ◽  
Weilai Chen ◽  
Jiake Yu ◽  
Peipei Fang ◽  
...  

Abstract This study aimed to investigate the mechanism of mangiferin on regulating endoplasmic reticulum (ER) stress in acute liver injury. The mouse model of acute liver injury was established by injection of LPS/D-GalN. The primary mouse hepatocytes were stimulated with LPS to induce the in vitro model. The effect of miR-20a/101a on the luciferase activity of Nrf2 3′-UTR was assessed by luciferase reporter assay. Mangiferin improved the liver function, inhibited the oxidative stress and ER stress and down-regulated the expressions of miR-20a and miR-101a in LPS/D-GalN-induced mice and LPS-induced hepatocytes. The knockdown of miR-20a and miR-101a co-operatively alleviated ER stress of LPS-induced hepatocytes. miR-20a and miR-101a both targeted Nrf2 and the over-expression of miR-20a or miR-101a decreased Nrf2 protein level, while their silences increased Nrf2 protein level. The silence of miR-20a and miR-101a promoted Nrf2 expression and inhibited the ER stress in LPS-induced hepatocytes, while the knockdown of Nrf2 reversed these effects. The over-expression of miR-20a and miR-101a eliminated the effects of mangiferin on Nrf2 protein level and ER stress in LPS-induced hepatocytes and Nrf2 over-expression altered these trends. Our findings suggest that mangiferin alleviates ER stress in acute liver injury by regulating the miR-20a/miR-101a-Nrf2 axis.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Lixiang Wang ◽  
Xin Li ◽  
Yuki Hanada ◽  
Nao Hasuzawa ◽  
Yoshinori Moriyama ◽  
...  

AbstractMitochondrial fusion and fission, which are strongly related to normal mitochondrial function, are referred to as mitochondrial dynamics. Mitochondrial fusion defects in the liver cause a non-alcoholic steatohepatitis-like phenotype and liver cancer. However, whether mitochondrial fission defect directly impair liver function and stimulate liver disease progression, too, is unclear. Dynamin-related protein 1 (DRP1) is a key factor controlling mitochondrial fission. We hypothesized that DRP1 defects are a causal factor directly involved in liver disease development and stimulate liver disease progression. Drp1 defects directly promoted endoplasmic reticulum (ER) stress, hepatocyte death, and subsequently induced infiltration of inflammatory macrophages. Drp1 deletion increased the expression of numerous genes involved in the immune response and DNA damage in Drp1LiKO mouse primary hepatocytes. We administered lipopolysaccharide (LPS) to liver-specific Drp1-knockout (Drp1LiKO) mice and observed an increased inflammatory cytokine expression in the liver and serum caused by exaggerated ER stress and enhanced inflammasome activation. This study indicates that Drp1 defect-induced mitochondrial dynamics dysfunction directly regulates the fate and function of hepatocytes and enhances LPS-induced acute liver injury in vivo.


Author(s):  
Steven A. Bloomer ◽  
Eric Moyer

Aging is associated with chronic, low-grade inflammation that adversely affects physiological function. The liver regulates systemic inflammation; it is a source of cytokine production and also scavenges bacteria from the portal circulation to prevent infection of other organs. The cells with primary roles in these functions, hepatic macrophages, become more numerous in the liver with "normal" aging (i.e. in the absence of disease). Here we demonstrate evidence and potential mechanisms for this phenomenon, which include augmented tumor necrosis factor-α (TNFα) and intercellular adhesion molecule-1 (ICAM-1) expression in the liver. Also, we discuss how an age-related impairment in autophagy within macrophages leads to a pro-oxidative state and ensuing production of pro-inflammatory cytokines, particularly interleukin 6 (IL-6). Given that the liver is a rich source of macrophages, we posit that it represents a major source of the elevated systemic IL-6 observed with aging, which is associated with physiological dysfunction. Testing a causal role for liver macrophage production of IL-6 during aging remains a challenge, yet interventions that have targeted macrophages and/or IL-6 have demonstrated promise in treating age-related diseases. These studies have demonstrated an age-related, deleterious reprogramming of macrophage function, which worsens pathology. Therefore, hepatic macrophage accrual is indeed a cause for concern, and therapies that attenuate the aged phenotype of macrophages will likely prove useful in promoting healthy aging.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2038-2038
Author(s):  
Olga Balague ◽  
Luis Colomo ◽  
Armando Lopez-Guillermo ◽  
Elias Campo ◽  
Antonio Martinez

Abstract BACKGROUND The UPR is a prosurvival pathway activated in cells under ER stress induced by the accumulation of unfolded proteins. UPR activation in B cells normally occurs during the differentiation to antibody secreting plasma cells and requires XBP1activation. XBP-1 is a member of the TREB family of transcription factors that exists in the endoplasmic reticulum (ER) as a 33kDa protein, and in the nucleus as an active 50kDa transcription factor. The UPR stimulates two different ER proteins, ATF-6 and Ire-1, to increase XBP-1 transcription and XBP-1 mRNA splicing resulting in the accumulation of the active 50kDa nuclear protein. Moreover XBP1 is a target of proteosome inhibitors and is related to the aggressive behaviour of some carcinomas. The role of the activation of XBP-1 in lymphomas is still unknown. DESIGN: Reactive lymphoid tissues and 25 neoplastic human B-cell lines representing different stages of B-cell development were studied for XBP-1 expression by western blot and XBP-1, PAX-5, Blimp-1/prdm1, MUM-1/IRF-4 and ICSBP1/IRF-8 by immunohistochemistry. XBP-1 activation was assessed in 225 B-cell lymphomas from the archives of the laboratory of pathology by western blot, RT-PCR and immunohistochemistry . To further evaluate whether XBP-1 activation was related to the plasmacytic program or to ER stress signals we analyzed the cell lines by Western blot for XBP-1 and ATF-6 expression. RESULTS We characterize XBP-1 expression in reactive lymphoid tissues, 25 human cell lines and 225 B-cell tumors. In nearly all tonsillar lymphoid cells XBP-1 was detected as a cytoplasmic protein with a paranuclear dot pattern. Nuclear positivity was observed only in scattered centrocytes in the light zone of the germinal centers and in plasma cells, always coexpressed with plasma cell related transcription factors as MUM-1/IRF-4 and Blimp1/prdm1. Active p50XBP-1 was found in 24/25 cell lines by western blot regardless ATF-6 expression and confirmed by immunohistochemistry . Moreover p50XBP1 was found in 27/31(87%) plasmacytomas, 36/64(56%) DLBCL-ABC and in 3/10(30%) DLBCL-GCB and 22/43(51%) plasmablastic lymphomas. Intriguingly, p50XBP1 was detected also in 2/11(18%)BL and 4/25(16%)MCL with blastic features. CONCLUSIONS.XBP-1 is activated in a subset of follicular centre cells committed to plasma cell differentiation and in plasma cells.UPR prosurvival pathways in the neoplastic cell lines are activated independently of the extent of the ATF-6 activation.p50XBP1 is mostly activated in aggressive B-cell lymphomas regardless to the plasmacytic differentiation of the tumours. Thus, p50XBP-1 may be a new molecular target in the treatment of aggressive B-cell malignancies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3772-3772
Author(s):  
Masaki Ri ◽  
Shinsuke Iida ◽  
Takayuki Nakashima ◽  
Hideyuki Miyazaki ◽  
Fumiko Mori ◽  
...  

Abstract Abstract 3772 Poster Board III-708 [Purpose] Bortezomib (BTZ), a proteasome inhibitor, has been introduced into the treatment of multiple myeloma (MM). It shows remarkable response against both relapsed/refractory and newly diagnosed MM. However, it is often encountered that BTZ treatment achieves very short duration of response and permits early drug resistance. Therefore, understanding the mechanisms underlying this drug resistance is necessary to develop novel treatments to overcome this problem. [Materials & Methods] We established two stable BTZ-resistant MM cell lines, KMS-11/BTZ and OPM-2/BTZ, whose IC50 values were respectively 24.7- and 16.6-fold higher than their parental cell lines, under continuous exposure to BTZ. Using these resistant cells, we investigated on their proteasome activity, the alteration of proteasome β5 subunit (PSMB5) gene, misfolded protein accumulation, endoplasmic reticulum (ER) stress, and apoptosis signals including BH3 only proteins in comparison with their parental cells at clinically achievable concentration of BTZ treatment. [Results & Discussion] No activation of caspase -3,-8, and -9 and BH3 only protein, Noxa, which were initially up-regulated in BTZ-treated cells, were noted in BTZ-resistant cells even in the presence of BTZ. These results indicate avoidance of fatal intracellular stress may block transcriptional activation of Noxa in resistant cells at an early phase after BTZ exposure. In gel shift assay detecting NF-kB-DNA complexes, BTZ-resistant cells maintained constitutive NF-kB activation, whereas their parental cells lost its activity in the presence of BTZ. In addition, cellular proteasome activities including chymotrypsin-like and caspase-like activity were markedly inhibited by BTZ treatment in parental cells, and moderately also in BTZ-resistant cells, when detected by fluorogenic substrates specific for each proteasome activity. While time-dependent accumulation of ubiquitinated proteins was prevented only in BTZ-resistant cells, but not in their parental cells after BTZ exposure. Resistance was partly explained by the presence of a unique point mutation, G322A, in the gene encoding PSMB5 in both BTZ-resistant cell lines, which substituted Thr for Ala at the codon 49 in amino acid level. This constitution has been reported to gives rise to the conformational change of BTZ-binding pocket in β5 subunit, which results in partial disruption of the contact between BTZ and chymotrypsin-like active site. Furthermore, BTZ-resistant and parental MM cells had nearly equal expression of cytoplasmic and ER chaperons, however, only BTZ-resistant cells could prevent misfolded protein accumulation and therefore avoid fatal ER stress represented as activation of CHOP and of caspase-4, -12 after BTZ treatment. [Conclusion] Two kinds of stable BTZ-resistant MM cell lines were established, which acquired the unique point mutation (G322A) in BTZ-binding pocket of PSMB5, prevented the accumulation of misfolded proteins probably via reduced affinity of 26S proteasome to BTZ and avoided the development of catastrophic ER stress unlike their parental cells. These cell lines will provide better understanding of the underlying mechanisms of the BTZ-resistance, and will lead to the development of novel treatment strategies for overcoming BTZ-resistance in the patients with MM. Disclosures: Iida: JANSSEN PHARMACEUTICAL: Honoraria; KYOWA KIRIN: Research Funding. Nakashima:KYOWA KIRIN: Employment. Miyazaki:KYOWA KIRIN: Employment. Shiotsu:KYOWA KIRIN: Employment.


2016 ◽  
Vol 13 (4) ◽  
pp. 3052-3062 ◽  
Author(s):  
QINGQING DONG ◽  
FEI CHU ◽  
CHENGZHU WU ◽  
QIANG HUO ◽  
HUAIYONG GAN ◽  
...  

2021 ◽  
Author(s):  
Xiufang Lv ◽  
Jing Li ◽  
Li He ◽  
Li Cheng ◽  
Min Zhao ◽  
...  

Abstract Background Serum small extracellular vesicles (sEVs) and their small RNA (sRNA) cargoes could be promising biomarkers for the diagnosis of liver injury. However, the dynamic changes of serum sEVs and their sRNA components during liver injury and the biological functions of these liver-injury-serum sEVs have not been well characterized. Methods To identify serum sEV biomarkers for liver injury, we established a carbon tetrachloride-induced mouse liver injury model to simulate acute liver injury (ALI), chronic liver injury (CLI) and recovery. Serum sEVs were obtained and characterized. Serum sEV sRNAs were profiled. Differentially expressed microRNAs (miRNA) were compared to mouse liver enriched miRNAs and previously reported circulating miRNAs that related to human liver diseases. The biological significance was evaluated by Ingenuity Pathway Analysis of altered sEV miRNAs, and conditional culture of ALI serum sEVs with primary hepatic macrophages. Results We found that both ALI and CLI changed the concentration and morphology of serum sEVs. The proportion of serum sEV miRNA increased upon liver injury, with the liver as the primary contributor. The altered serum sEV miRNAs based on mice's study were consistent with those human liver diseases-related circulating miRNAs. Serum sEV miRNA signatures for ALI and CLI, and a panel of miRNAs as common marker for liver injury, were established. The differential serum sEV miRNAs in ALI mainly contributed to liver steatosis and inflammation, while those in CLI primarily contributed to hepatocellular carcinoma and hyperplasia. ALI serum sEVs decreased both CD86 and CD206 expression in monocyte-derived macrophages, but increased CD206 expression in resident macrophages. Conclusion Serum sEVs in the different stages of liver injury carried different sRNA messages and contributed to diverse pathological processes. ALI serum sEVs might alleviate liver damage by depolarizing monocyte-derived macrophages and educating resident liver macrophage to M2 like cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4992-4992
Author(s):  
Shota Moriya ◽  
Xiao-Fang Che ◽  
Seiichiro Komatsu ◽  
Akihisa Abe ◽  
Tomohiro Kawaguchi ◽  
...  

Abstract Abstract 4992 Macroautophagy (hereafter, “autophagy”) is a highly conserved cellular process of self-degradation in eukaryotes. Intracellular proteins and organelles including the endoplasmic reticulum (ER) are engulfed in a double-membrane vesicle called an autophagosome and are delivered to lysosomes for degradation by lysosomal hydrolases. Autophagy has been regarded as a bulk non-selective degradation system for long-lived proteins and organelles, in contrast to the specific degradation of polyubiquitinated short-lived proteins by proteasome. However, recent reports revealed the selective degradation pathway of ubiquitinated protein through autophagy via docking proteins such as p62 and the related protein NBR1, having both a microtubule-associated protein 1 light chain 3 (LC3)-interacting region and a ubiquitin-associated domain. LC3 is essential for autophagy and is associated with autophagosome membranes after processing. By binding ubiquitin via their C-terminal ubiquitin-associated domains, p62-mediated degradation of ubiquitinated cargo occurs by selective autophagy. Thus the two major intracellular degradation systems are directly linked. We have reported on the inhibition of autophagy using the autophagy inhibitor bafilomycin A1enhanced bortezomib (BZ)-induced apoptosis by burdening ER stress in multiple myeloma (MM) cell lines. It was also reported that clarithromycin (CAM) attenuated or blocked autophagy flux, probably mediated through inhibiting the lysosomal function. We therefore investigated whether simultaneous inhibition of protein degradation systems such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome system by a macrolide antibiotic enhances the loading of ER-stress and ER–stress-mediated CHOP (CADD153) induction, followed by transcriptional activation for proapoptotic genes. BZ potently induces autophagy, ER–stress, and apoptosis in MM cell lines (e. g. U266, IM-9, and RPMI8226). The macrolide antibiotics including CAM, concanamycin A, erythromycin (EM), and azithromycin (AZM) all blocked autophagy flux, as assessed by intracellular accumulation of LC3B-II and p62. Combined treatment of BZ and CAM or AZM enhanced cytotoxicity in MM cell lines, although treatment with either CAM or AZM alone exhibited almost no cytotoxicity. This combination also substantially enhanced aggresome formation, intracellular ubiquitinated proteins, and induced the proapoptotic transcription factor CHOP. Expression levels of the proapoptotic genes transcriptionally regulated by CHOP (e. g. BIM, BAX, DR5, and TRB3) were all enhanced by combined treatment with BZ plus CAM, compared with treatment with each reagent alone. Like the MM cell lines, the CHOP+/+ murine embryonic fibroblast (MEF) cell line exhibited enhanced cytotoxicity and up-regulation of CHOP and its transcriptional targets with a combination of BZ and one of the macrolides. In contrast, CHOP−/− MEF cells exhibited resistance against BZ and almost completely canceled enhanced cytotoxicity with a combination of BZ and a macrolide. These data suggest that ER-stress mediated CHOP induction is involved in pronounced cytotoxicity. Simultaneously targeting two major intracellular protein degradation systems such as the ubiquitin-proteasome system by BZ and the autophagy-lysosome system by a macrolide antibiotic enhances ER-stress-mediated apoptosis in MM cells. This result suggests the therapeutic possibility of using a macrolide antibiotic with a proteasome inhibitor for MM therapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document