scholarly journals Ionizing irradiation-induced Fgr in senescent cells mediates fibrosis

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Amitava Mukherjee ◽  
Michael W. Epperly ◽  
Donna Shields ◽  
Wen Hou ◽  
Renee Fisher ◽  
...  

AbstractThe role of cellular senescence in radiation-induced pulmonary fibrosis (RIPF) and the underlying mechanisms are unknown. We isolated radiation-induced senescent tdTOMp16 positive mesenchymal stem cells, established their absence of cell division, then measured levels of irradiation-induced expression of biomarkers of senescence by RNA-seq analysis. We identified a Log2 6.17-fold upregulation of tyrosine kinase Fgr, which was a potent inducer of biomarkers of fibrosis in target cells in non-contact co-cultures. Inhibition of Fgr by shRNA knockdown did not block radiation-induced senescence in vitro; however, both shRNA knockdown, or addition of a specific small-molecule inhibitor of Fgr, TL02-59, abrogated senescent cell induction of profibrotic genes in transwell-separated target cells. Single-cell RNA-seq (scRNAseq) analysis of mouse lungs at day 150 after 20 Gy thoracic irradiation revealed upregulation of Fgr in senescent neutrophils, and macrophages before detection of lung fibrosis. Thus, upregulated Fgr in radiation-induced senescent cells mediates RIPF and is a potential therapeutic target for the prevention of this radiation late effect.

Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1676
Author(s):  
Giulia Rossi ◽  
Martina Placidi ◽  
Chiara Castellini ◽  
Francesco Rea ◽  
Settimio D'Andrea ◽  
...  

Infertility is a potential side effect of radiotherapy and significantly affects the quality of life for adolescent cancer survivors. Very few studies have addressed in pubertal models the mechanistic events that could be targeted to provide protection from gonadotoxicity and data on potential radioprotective treatments in this peculiar period of life are elusive. In this study, we utilized an in vitro model of the mouse pubertal testis to investigate the efficacy of crocetin to counteract ionizing radiation (IR)-induced injury and potential underlying mechanisms. Present experiments provide evidence that exposure of testis fragments from pubertal mice to 2 Gy X-rays induced extensive structural and cellular damage associated with overexpression of PARP1, PCNA, SOD2 and HuR and decreased levels of SIRT1 and catalase. A twenty-four hr exposure to 50 μM crocetin pre- and post-IR significantly reduced testis injury and modulated the response to DNA damage and oxidative stress. Nevertheless, crocetin treatment did not counteract the radiation-induced changes in the expression of SIRT1, p62 and LC3II. These results increase the knowledge of mechanisms underlying radiation damage in pubertal testis and establish the use of crocetin as a fertoprotective agent against IR deleterious effects in pubertal period.


1979 ◽  
Vol 149 (4) ◽  
pp. 856-869 ◽  
Author(s):  
T J Braciale

Purified type A influenza viral hemagglutinin stimulates an in vitro cell-mediated cytotoxic cell response that exhibits a high degree of specificity for the immunizing hemagglutinin. The response magnitude is proportional to the hemagglutinin dose used for stimulation. The lytic activity of the effector cells is H-2 restricted. Analysis of the specificity of the response indicated that these cytotoxic T cells readily distinguish target cells expressing serologically unrelated hemagglutinin from target cells bearing hemagglutinins serologically related to the stimulating hemagglutinin. Further analysis of the fine specificity of cytotoxic T-cell recognition with serologically cross-reactive type A influenza hemagglutinins revealed a hierarchy of cross-reactivity among these hemagglutinins that was the converse of the serologic hierarchy. These results are discussed in terms of possible differences and similarities in the specificity repertoire of cytotoxic T cells and antibodies. Possible implications of these findings from the standpoint of cytotoxic T-cell induction are also discussed.


2019 ◽  
Author(s):  
Ayshwarya Subramanian ◽  
Eriene-Heidi Sidhom ◽  
Maheswarareddy Emani ◽  
Nareh Sahakian ◽  
Katherine Vernon ◽  
...  

AbstractHuman iPSC-derived kidney organoids have the potential to revolutionize discovery, but assessing their consistency and reproducibility across iPSC lines, and reducing the generation of off-target cells remain an open challenge. Here, we used single cell RNA-Seq (scRNA-Seq) to profile 415,775 cells to show that organoid composition and development are comparable to human fetal and adult kidneys. Although cell classes were largely reproducible across iPSC lines, time points, protocols, and replicates, cell proportions were variable between different iPSC lines. Off-target cell proportions were the most variable. Prolonged in vitro culture did not alter cell types, but organoid transplantation under the mouse kidney capsule diminished off-target cells. Our work shows how scRNA-seq can help score organoids for reproducibility, faithfulness and quality, that kidney organoids derived from different iPSC lines are comparable surrogates for human kidney, and that transplantation enhances their formation by diminishing off-target cells.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yonghui Hou ◽  
Bingyu Zhou ◽  
Ming Ni ◽  
Min Wang ◽  
Lingli Ding ◽  
...  

Abstract Background Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. Methods Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. Results In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. Conclusion Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.


1978 ◽  
Vol 147 (1) ◽  
pp. 110-122 ◽  
Author(s):  
S Kontiainen ◽  
M Feldmann

Antigen-specific suppressor factor produced by metabolically active in vitro-induced suppressor cells, upon further antigenic stimulation, act on nylon wool nonadherent, Ly-2-negative target cells within helper cell population, resulting in suppression of both the IgM and IgG antibody responses. Thus the target is an Ly-1+ T cell, possibly the helper cell. All the mouse strains tested so far have been able to produce the factor, and when tested in CBA or B10 mice, there seems to be no genetic restriction involved e.g., nonsyngeneic suppressor factors suppress as well as do the syngeneic factors. Comparison of the properties of suppressor factor with those of extracts of suppressor cells yield differences in origin, target of action and effect, indicating that these are different molecules. The heterogeneity of suppressor pathways is discussed.


Author(s):  
O.V. Shemetun ◽  
◽  
O.A. Talan ◽  
O.B. Dibska ◽  
M.A. Pilinska ◽  
...  

The effect of intact blood lymphocytes from conditionally healthy persons on the genome stability in blood lymphocytes of patients with primary diagnosis of B-cell chronic lymphocytic leukemia (CLL) exposed in vitro to γ-quanta 137Cs at the G0 stage of the cell cycle in a dose of 0.5 Gy was investigated. For the study, the own model system of co-cultivation of blood lymphocytes from persons with different genders that permit to study va rious manifestations of the bystander response phenomenon at the cytogenetic level was used. The decrease in the radiation-induced total frequency of chromosome aberrations in irradiated cells of patients with CLL (from 12.88 till 9.56 per 100 metaphases, p < 0.01) due to a reduction in the level of chromatid-type aberrations (from 5.35 till 2.83 per 100 cells, p < 0.001), which are considered as markers of the chromosomal instability, was established. The frequencies of unstable cytogenetic markers of a radiation exposure (dicentric and ring chromosomes) remained unchanged (p> 0.05). The obtained data indicate that the result of the interaction between irradiated in vitro blood cells of patients with B-cell CLL (target cells) with intact blood lymphocytes of relatively healthy individuals (bystander cells) is a decrease of the chromosome instability in target cells, which is similar to the radiation-induced rescue effect type one.


2020 ◽  
Vol 25 (1) ◽  
Author(s):  
Kota Ogawa ◽  
Akiko Noda ◽  
Jun Ueda ◽  
Takehiro Ogata ◽  
Rumiko Matsuyama ◽  
...  

Abstract Background Animal model studies show that reductive stress is involved in cardiomyopathy and myopathy, but the exact physiological relevance remains unknown. In addition, the microRNAs miR-143 and miR-145 have been shown to be upregulated in cardiac diseases, but the underlying mechanisms associated with these regulators have yet to be explored. Methods We developed transgenic mouse lines expressing exogenous miR-143 and miR-145 under the control of the alpha-myosin heavy chain (αMHC) promoter/enhancer. Results The two transgenic lines showed dilated cardiomyopathy-like characteristics and early lethality with markedly increased expression of miR-143. The expression of hexokinase 2 (HK2), a cardioprotective gene that is a target of miR-143, was strongly suppressed in the transgenic hearts, but the in vitro HK activity and adenosine triphosphate (ATP) content were comparable to those observed in wild-type mice. In addition, transgenic complementation of HK2 expression did not reduce mortality rates. Although HK2 is crucial for the pentose phosphate pathway (PPP) and glycolysis, the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG) was unexpectedly higher in the hearts of transgenic mice. The expression of gamma-glutamylcysteine synthetase heavy subunit (γ-GCSc) and the in vitro activity of glutathione reductase (GR) were also higher, suggesting that the recycling of GSH and its de novo biosynthesis were augmented in transgenic hearts. Furthermore, the expression levels of glucose-6-phosphate dehydrogenase (G6PD, a rate-limiting enzyme for the PPP) and p62/SQSTM1 (a potent inducer of glycolysis and glutathione production) were elevated, while p62/SQSTM1 was upregulated at the mRNA level rather than as a result of autophagy inhibition. Consistent with this observation, nuclear factor erythroid-2 related factor 2 (Nrf2), Jun N-terminal kinase (JNK) and inositol-requiring enzyme 1 alpha (IRE1α) were activated, all of which are known to induce p62/SQSTM1 expression. Conclusions Overexpression of miR-143 and miR-145 leads to a unique dilated cardiomyopathy phenotype with a reductive redox shift despite marked downregulation of HK2 expression. Reductive stress may be involved in a wider range of cardiomyopathies than previously thought.


2021 ◽  
Vol 22 (18) ◽  
pp. 9964
Author(s):  
Yimeng Song ◽  
Songling Hu ◽  
Junling Zhang ◽  
Lin Zhu ◽  
Xinrui Zhao ◽  
...  

Radiation-induced abscopal effect (RIAE) outside of radiation field is becoming more attractive. However, the underlying mechanisms are still obscure. This work investigated the deleterious effect of thoracic irradiation (Th-IR) on distant bone marrow and associated signaling factors by irradiating the right thorax of mice with fractionated doses (8 Gy × 3). It was found that this localized Th-IR increased apoptosis of bone marrow cells and micronucleus formation of bone marrow polychromatic erythrocytes after irradiation. Tandem mass tagging (TMT) analysis and ELISA assay showed that the concentrations of TNF-α and serum amyloid A (SAA) in the mice were significantly increased after Th-IR. An immunohistochemistry assay revealed a robust increase in SAA expression in the liver rather than in the lungs after Th-IR. In vitro experiments demonstrated that TNF-α induced SAA expression in mouse hepatoma Hepa1–6 cells, and these two signaling factors induced DNA damage in bone marrow mesenchymal stem cells (BMSCs) by increasing reactive oxygen species (ROS). On the other hand, injection with TNF-α inhibitor before Th-IR reduced the secretion of SAA and attenuated the abscopal damage in bone marrow. ROS scavenger NAC could also mitigated Th-IR/SAA-induced bone marrow damage in mice. Our findings indicated that Th-IR triggered TNF-α release from lung, which further promoted SAA secretion from liver in a manner of cascade reaction. Consequently, these signaling factors resulted in induction of abscopal damage on bone marrow of mice.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Junling Zhang ◽  
Dan Yao ◽  
Yimeng Song ◽  
Yan Pan ◽  
Lin Zhu ◽  
...  

Abstract Radiation-induced abscopal effect (RIAE) may influence radiotherapy efficiency. However, it is unknown whether RIAE triggers abnormal genetic consequence. We present a novel evidence that, when mice were given fractionated irradiation on right thorax, the ultrastructure of blood-testis barrier was damaged in company with apoptosis induction in testes, and the sperm number and vitality were drastically decreased so that both the fertility and the survival of their offspring were reduced. Protein microarray assay and hormone detection showed that some cytokines especially TNF-α, TGF-β and estradiol in the serum of irradiated mice increased to higher levels in consistent with abscopal damage, and this conditioned serum had toxic effect on TM4 cells in vitro. When the mice were fed with cimetidine, the above abscopal responses were significantly attenuated. This study demonstrates in the first time that the thoracic irradiation (Th-IR) induces structural and functional damage in the distal testes and further cause fertility decline of irradiated male mice, which may have important implications in the strategy development of radiotherapy in avoiding abnormal genetic consequence.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lan Luo ◽  
Chen Yan ◽  
Naoki Fuchi ◽  
Yukinobu Kodama ◽  
Xu Zhang ◽  
...  

Abstract Background Radiation-induced heart disease has been reported, but the underlying mechanisms remain unclear. Mesenchymal stem cells (MSCs), also residing in the heart, are highly susceptible to radiation. We examined the hypothesis that the altered secretion of extracellular vesicles (EVs) from MSCs is the trigger of radiation-induced heart disease. Methods By exposing human placental tissue-derived MSCs to 5 Gy γ-rays, we then isolated EVs from the culture medium 48 h later and evaluated the changes in quantity and quality of EVs from MSCs after radiation exposure. The biological effects of EVs from irradiated MSCs on HUVECs and H9c2 cells were also examined. Results Although the amount and size distribution of EVs did not differ between the nonirradiated and irradiated MSCs, miRNA sequences indicated many upregulated or downregulated miRNAs in irradiated MSCs EVs. In vitro experiments using HUVEC and H9c2 cells showed that irradiated MSC-EVs decreased cell proliferation (P < 0.01), but increased cell apoptosis and DNA damage. Moreover, irradiated MSC-EVs impaired the HUVEC tube formation and induced calcium overload in H9c2 cells. Conclusions EVs released from irradiated MSCs show altered miRNA profiles and harmful effects on heart cells, which provides new insight into the mechanism of radiation-related heart disease risks.


Sign in / Sign up

Export Citation Format

Share Document