scholarly journals Nonwoven-based gelatin/polycaprolactone membrane loaded with ERK inhibitor U0126 for treatment of tendon defects

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Yonghui Hou ◽  
Bingyu Zhou ◽  
Ming Ni ◽  
Min Wang ◽  
Lingli Ding ◽  
...  

Abstract Background Tendon is a major component of musculoskeletal system connecting the muscles to the bone. Tendon injuries are very common orthopedics problems leading to impeded motion. Up to now, there still lacks effective treatments for tendon diseases. Methods Tendon stem/progenitor cells (TSPCs) were isolated from the patellar tendons of SD rats. The expression levels of genes were evaluated by quantitative RT-PCR. Immunohistochemistry staining was performed to confirm the presence of tendon markers in tendon tissues. Bioinformatics analysis of data acquired by RNA-seq was used to find out the differentially expressed genes. Rat patellar tendon injury model was used to evaluate the effect of U0126 on tendon injury healing. Biomechanical testing was applied to evaluate the mechanical properties of newly formed tendon tissues. Results In this study, we have shown that ERK inhibitor U0126 rather PD98059 could effectively increase the expression of tendon-related genes and promote the tenogenesis of TSPCs in vitro. To explore the underlying mechanisms, RNA sequencing was performed to identify the molecular difference between U0126-treated and control TSPCs. The result showed that GDF6 was significantly increased by U0126, which is an important factor of the TGFβ superfamily regulating tendon development and tenogenesis. In addition, NBM (nonwoven-based gelatin/polycaprolactone membrane) which mimics the native microenvironment of the tendon tissue was used as an acellular scaffold to carry U0126. The results demonstrated that when NBM was used in combination with U0126, tendon healing was significantly promoted with better histological staining outcomes and mechanical properties. Conclusion Taken together, we have found U0126 promoted tenogenesis in TSPCs through activating GDF6, and NBM loaded with U0126 significantly promoted tendon defect healing, which provides a new treatment for tendon injury.

2019 ◽  
Author(s):  
Jessica E. Ackerman ◽  
Valentina Studentsova ◽  
Katherine T. Best ◽  
Emma Knapp ◽  
Alayna E. Loiselle

AbstractIdentification of pro-regenerative approaches to improve tendon healing is of critical importance given the diminished quality of life and physical function that accompanies the typical fibrotic response to tendon injury. S100a4 modulates fibrosis through tissue-type dependent mechanisms, and the role of S100a4 in fibrotic, scar-mediated tendon healing has not been established. In the present study we tested the hypothesis that inhibition of S100a4 improves tendon function following acute injury and surgical repair. We demonstrate cell non-autonomous functions of S100a4 as S100a4 haploinsufficiency promotes regenerative tendon healing, including decreased scar formation and improved mechanical properties. Moreover, inhibition of S100a4 via antagonism of its putative receptor, the Receptor for Advanced Glycation Endproducts (RAGE), also decreases scar formation. Mechanistically, knock-down of S100a4 decreases myofibroblast and macrophage content at the site of injury, with both cell populations being key drivers of fibrotic progression. In contrast, S100a4+ cell depletion displays time-dependent effects on scar formation, and consistent impairments in restoration of mechanical properties, indicating a critical role for these cells in re-establishing tendon strength after injury. Finally, we demonstrate, that S100a4-lineage cells become α-SMA+ myofibroblasts, via loss of S100a4 expression. Using a combination of genetic mouse models, small molecule inhibitors and in vitro studies we have defined S100a4 as a novel, promising therapeutic candidate to improve tendon function after acute injury.


Oncogene ◽  
2021 ◽  
Author(s):  
Hsiu-Chi Lee ◽  
Chien-Hui Ou ◽  
Yun-Chen Huang ◽  
Pei-Chi Hou ◽  
Chad J. Creighton ◽  
...  

AbstractMetastatic castration-resistant prostate cancer (mCRPC) is a malignant and lethal disease caused by relapse after androgen-deprivation (ADT) therapy. Since enzalutamide is innovated and approved by US FDA as a new treatment option for mCRPC patients, drug resistance for enzalutamide is a critical issue during clinical usage. Although several underlying mechanisms causing enzalutamide resistance were previously identified, most of them revealed that drug resistant cells are still highly addicted to androgen and AR functions. Due to the numerous physical functions of AR in men, innovated AR-independent therapy might alleviate enzalutamide resistance and prevent production of adverse side effects. Here, we have identified that yes-associated protein 1 (YAP1) is overexpressed in enzalutamide-resistant (EnzaR) cells. Furthermore, enzalutamide-induced YAP1 expression is mediated through the function of chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII) at the transcriptional and the post-transcriptional levels. Functional analyses reveal that YAP1 positively regulates numerous genes related to cancer stemness and lipid metabolism and interacts with COUP-TFII to form a transcriptional complex. More importantly, YAP1 inhibitor attenuates the growth and cancer stemness of EnzaR cells in vitro and in vivo. Finally, YAP1, COUP-TFII, and miR-21 are detected in the extracellular vesicles (EVs) isolated from EnzaR cells and sera of patients. In addition, treatment with EnzaR-EVs induces the abilities of cancer stemness, lipid metabolism and enzalutamide resistance in its parental cells. Taken together, these results suggest that YAP1 might be a crucial factor involved in the development of enzalutamide resistance and can be an alternative therapeutic target in prostate cancer.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3055
Author(s):  
Elisabetta Stanzani ◽  
Leire Pedrosa ◽  
Guillaume Bourmeau ◽  
Oceane Anezo ◽  
Aleix Noguera-Castells ◽  
...  

Therapeutic resistance after multimodal therapy is the most relevant cause of glioblastoma (GBM) recurrence. Extensive cellular heterogeneity, mainly driven by the presence of GBM stem-like cells (GSCs), strongly correlates with patients’ prognosis and limited response to therapies. Defining the mechanisms that drive stemness and control responsiveness to therapy in a GSC-specific manner is therefore essential. Here we investigated the role of integrin a6 (ITGA6) in controlling stemness and resistance to radiotherapy in proneural and mesenchymal GSCs subtypes. Using cell sorting, gene silencing, RNA-Seq, and in vitro assays, we verified that ITGA6 expression seems crucial for proliferation and stemness of proneural GSCs, while it appears not to be relevant in mesenchymal GSCs under basal conditions. However, when challenged with a fractionated protocol of radiation therapy, comparable to that used in the clinical setting, mesenchymal GSCs were dependent on integrin a6 for survival. Specifically, GSCs with reduced levels of ITGA6 displayed a clear reduction of DNA damage response and perturbation of cell cycle pathways. These data indicate that ITGA6 inhibition is able to overcome the radioresistance of mesenchymal GSCs, while it reduces proliferation and stemness in proneural GSCs. Therefore, integrin a6 controls crucial characteristics across GBM subtypes in GBM heterogeneous biology and thus may represent a promising target to improve patient outcomes.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yuk Wa Lee ◽  
Sai Chuen Fu ◽  
Man Yi Yeung ◽  
Chun Man Lawrence Lau ◽  
Kai Ming Chan ◽  
...  

Tendon healing is slow and usually results in inferior fibrotic tissue formation. Recently, application of tendon derived stem cells (TDSCs) improved tendon healing in animal studies. In a chicken model, local injection of antioxidants reduced tendon adhesion after tendon injury. An in vitro study demonstrated that supplementation of H2O2reduced tenogenic marker expression in TDSCs. These findings suggested that the possibility of TDSCs is involved in tendon healing and the cellular activities of TDSCs might be affected by oxidative stress of the local environment. After tendon injury, oxidative stress is increased. Redox modulation might affect healing outcomes via affecting cellular activities in TDSCs. To study the effect of oxidative stress on TDSCs, the cellular activities of rat/human TDSCs were measured under different dosages of vitamin C or H2O2in this study. Lower dose of vitamin C increased cell proliferation, viability and migration; H2O2affected colony formation and suppressed cell migration, cell viability, apoptosis, and proliferation. Consistent with previous studies, oxidative stresses (H2O2) affect both recruitment and survival of TDSCs, while the antioxidant vitamin C may exert beneficial effects at low doses. In conclusion, redox modulation affected cellular activities of TDSCs and might be a potential strategy for tendon healing treatment.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Nicolette N. Houreld

Impaired wound healing is a common complication associated with diabetes with complex pathophysiological underlying mechanisms and often necessitates amputation. With the advancement in laser technology, irradiation of these wounds with low-intensity laser irradiation (LILI) or phototherapy, has shown a vast improvement in wound healing. At the correct laser parameters, LILI has shown to increase migration, viability, and proliferation of diabetic cellsin vitro; there is a stimulatory effect on the mitochondria with a resulting increase in adenosine triphosphate (ATP). In addition, LILI also has an anti-inflammatory and protective effect on these cells. In light of the ever present threat of diabetic foot ulcers, infection, and amputation, new improved therapies and the fortification of wound healing research deserves better prioritization. In this review we look at the complications associated with diabetic wound healing and the effect of laser irradiation bothin vitroandin vivoin diabetic wound healing.


2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Lan Zhan ◽  
Yu Pang ◽  
Hao Jiang ◽  
Shicun Zhang ◽  
Hongwei Jin ◽  
...  

Stroke is a disease with the highest incidence rate and the highest mortality rate in the world. The study aims to verify the neuroprotective effect of Butylphthalide. The mice were divided into sham group, MCAO group, and MCAO + Butylphthalide-treated group. The mice in MCAO + Butylphthalide-treated group were administered with 70 mg/kg Butylphthalide injection intraperitoneally after cerebral ischemia-reperfusion. The normal saline with the same volume was administered intraperitoneally for the mice in the MCAO group and sham group. The levels of miR-21 in brain tissue and cells were detected by qPCR. The OGD/R injury model of Neuro2A cells was used to simulate the hypoxic-ischemic environment of neurons in vitro. The proliferation rate of Neuro2A cells was detected with CCK-8. The production of ROS was detected with DCFH-DA. Compared with the mice in MCAO group, a decrease ( P < 0.01 ) was observed in the functional neurologic impairment scoring, cerebral infarction volume, and brain loss volume in the mice treated with MCAO + Butylphthalide, but an increase ( P < 0.01 ) was observed in the level of miR-21, which was positively correlated with functional neurologic impairment scoring (r = −0.8933, P < 0.001 ). MTT assay showed that the cell viability of OGD/R + Butylphthalide group was significantly higher than that of other groups ( P < 0.001 ), and the activity of ROS was significantly decreased ( P < 0.001 ). The WB results showed that, compared with OGD/R + miR-NC and control groups, the ratio of Bcl-2/Bax in OGD/R + Butylphthalide group and OGD/R + miR-21 mimics group was significantly higher ( P < 0.05 ), while the ratio of caspase-3/GAPDH was significantly lower ( P < 0.05 ). In conclusion, Butylphthalide has neuroprotective effect on the mouse model of MCAO. It may upregulate the level of miR-21 to inhibit neuronal apoptosis and ROS production and improve the proliferation activity. The specific mechanism may lie in inhibiting TLR4/NF-κB pathway.


2020 ◽  
Vol 21 (4) ◽  
pp. 1303 ◽  
Author(s):  
Stefan Bauersachs ◽  
Pascal Mermillod ◽  
Carmen Almiñana

Oviductal extracellular vesicles (oEVs) are emerging as key players in the gamete/embryo–oviduct interactions that contribute to successful pregnancy. Various positive effects of oEVs on gametes and early embryos have been found in vitro. To determine whether these effects are associated with changes of embryonic gene expression, the transcriptomes of embryos supplemented with bovine fresh (FeEVs) or frozen (FoEVs) oEVs during in vitro culture compared to controls without oEVs were analyzed by low-input RNA sequencing. Analysis of RNA-seq data revealed 221 differentially expressed genes (DEGs) between FoEV treatment and control, 67 DEGs for FeEV and FoEV treatments, and minor differences between FeEV treatment and control (28 DEGs). An integrative analysis of mRNAs and miRNAs contained in oEVs obtained in a previous study with embryonic mRNA alterations pointed to direct effects of oEV cargo on embryos (1) by increasing the concentration of delivered transcripts; (2) by translating delivered mRNAs to proteins that regulate embryonic gene expression; and (3) by oEV-derived miRNAs which downregulate embryonic mRNAs or modify gene expression in other ways. Our study provided the first high-throughput analysis of the embryonic transcriptome regulated by oEVs, increasing our knowledge on the impact of oEVs on the embryo and revealing the oEV RNA components that potentially regulate embryonic development.


2019 ◽  
Vol 17 (1) ◽  
pp. 413-421 ◽  
Author(s):  
Han-Qing Liu ◽  
Ya-Wen An ◽  
A-Zhen Hu ◽  
Ming-Hua Li ◽  
Guang-Hui Cui

AbstractIn this study we investigated the antineoplastic effects of Berberine (BBR)-mediated photodynamic therapy (PDT) on HeLa cells and its related mechanisms. The CCK-8 assay and flow cytometry were used to evaluate the proliferation and apoptosis of cells respectively. In addition, changes in protein expression levels were assessed using western blot. BBR at dose of 10 mg/kg was injected intraperitoneally to mice with tumors and PDT treatments were performed 24 hours later. In vivo imaging systems were used to evaluate the fluorescence of BBR. In vitro, PDT significantly enhanced the effects of BBR on inducing cell apoptosis and inhibiting proliferation. The in vivo results showed that the fluorescence intensity in the PDT group was decreased compared with that in the BBR group. Tumor weights and tumor size in the PDT group were less than those in the control group; however, when BBR was applied without PDT, no significant differences were observed between the BBR and control group. The results of western blot showed that PDT enhanced the inhibitory effects of BBR on the mammalian target of rapamycin (mTOR) signaling pathway, that may partly explain the potential underlying mechanisms.


2019 ◽  
Vol 14 (1) ◽  
pp. 34-42 ◽  
Author(s):  
Yingjuan Li ◽  
Guangchun Dai ◽  
Liu Shi ◽  
Yucheng Lin ◽  
Minhao Chen ◽  
...  

Aging is a key dangerous factor for the occurrence and severity of tendon injury, but the exact cognition of the relationship is elusive at present. More previous studies suggest age-related changes occur at tendon mechanical properties, structure and composition, but the pathological alternations may be overlooked, which might be a cause for the structure and function variations, and even speed up the progress of age-related disorders. Recently, the presence of tendon stem/progenitor cells (TSPCs) would provide new insights for the pathogenesis of tendon aging. In this review, the tendon mechanical properties, structure and composition are presented in brief, then, the pathological changes of the aging tendon are described firstly, and the latest researches on alterations of TSPCs in the pathogenesis of tendon aging have also been analyzed. At a cellular level, the hypothetical model of altered TSPCs fate for tendon aging is also proposed. Moreover, the regulation of TSPCs as a potential way of the therapies for age-related tendon diseases is discussed. Therefore, reversing the impaired function of TSPCs and promoting the tenogenic differentiation of TSPCs could become hot spots for further study and give the opportunity to establish new treatment strategies for age-related tendon injuries.


Sign in / Sign up

Export Citation Format

Share Document