scholarly journals The regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Qiong Zhang ◽  
Lihu Wang ◽  
Zhongtang Wang ◽  
Rentang Zhang ◽  
Ping Liu ◽  
...  

AbstractFruit lignification is due to lignin deposition in the cell wall during cell development. However, there are few studies on the regulation of cell wall lignification and lignin biosynthesis during fruit pigmentation. In this study, we investigated the regulation of cell wall lignification and lignin biosynthesis during pigmentation of winter jujube. The cellulose content decreased, while the lignin content increased in the winter jujube pericarp during pigmentation. Safranin O-fast green staining showed that the cellulose content was higher in the cell wall of winter jujube prior to pigmentation, whereas the lignin in the cell wall increased after pigmentation. The thickness of the epidermal cells decreased with pericarp pigmentation. A combined metabolomics and transcriptomics analysis showed that guaiacyl-syringyl (G-S) lignin was the main lignin type in the pericarp of winter jujube, and F5H (LOC107424406) and CCR (LOC107420974) were preliminarily identified as the key genes modulating lignin biosynthesis in winter jujube. Seventeen MYB and six NAC transcription factors (TFs) with potential regulation of lignin biosynthesis were screened out based on phylogenetic analysis. Three MYB and two NAC TFs were selected as candidate genes and further studied in detail. Arabidopsis ectopic expression and winter jujube pericarp injection of the candidate genes indicated that the MYB activator (LOC107425254) and the MYB repressor (LOC107415078) control lignin biosynthesis by regulating CCR and F5H, while the NAC (LOC107435239) TF promotes F5H expression and positively regulates lignin biosynthesis. These findings revealed the lignin biosynthetic pathway and associated genes during pigmentation of winter jujube pericarp and provide a basis for further research on lignin regulation.

2021 ◽  
Vol 22 (22) ◽  
pp. 12395
Author(s):  
Philippe Golfier ◽  
Olga Ermakova ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
...  

Cell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as a renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. In Miscanthus leaves, MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. The ectopic expression of MsSCM1 and MsMYB103 in N. benthamiana leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin compositions. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed an extensive overlap with the response to the NAC master transcription factor MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Furthermore, conserved and previously described promoter elements as well as novel and specific motifs could be identified from the target genes of the three transcription factors. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards a tailored biomass.


2019 ◽  
Author(s):  
Philippe Golfier ◽  
Faride Unda ◽  
Emily K. Murphy ◽  
Jianbo Xie ◽  
Feng He ◽  
...  

AbstractCell wall recalcitrance is a major constraint for the exploitation of lignocellulosic biomass as renewable resource for energy and bio-based products. Transcriptional regulators of the lignin biosynthetic pathway represent promising targets for tailoring lignin content and composition in plant secondary cell walls. A wealth of research in model organisms has revealed that transcriptional regulation of secondary cell wall formation is orchestrated by a hierarchical transcription factor (TF) network with NAC TFs as master regulators and MYB factors in the lower tier regulators. However, knowledge about the transcriptional regulation of lignin biosynthesis in lignocellulosic feedstocks, such as Miscanthus, is limited. Here, we characterized two Miscanthus MYB TFs, MsSCM1 and MsMYB103, and compared their transcriptional impact with that of the master regulator MsSND1. In Miscanthus leaves MsSCM1 and MsMYB103 are expressed at growth stages associated with lignification. Ectopic expression of MsSCM1 and MsMYB103 in tobacco leaves was sufficient to trigger secondary cell wall deposition with distinct sugar and lignin composition. Moreover, RNA-seq analysis revealed that the transcriptional responses to MsSCM1 and MsMYB103 overexpression showed extensive overlap with the response to MsSND1, but were distinct from each other, underscoring the inherent complexity of secondary cell wall formation. Together, MsSCM1 and MsMYB103 represent interesting targets for manipulations of lignin content and composition in Miscanthus towards tailored biomass.


2001 ◽  
Vol 73 (3) ◽  
pp. 561-566 ◽  
Author(s):  
Alain-M. Boudet ◽  
Matthieu Chabannes

In this article we highlight the contribution of molecular biology and lignin genetic engineering toward a better understanding of lignin biosynthesis and spatio-temporal deposition of lignin. Specific examples from the literature and from our laboratory will serve to underline the chemical flexibility of lignins, the complexity of the regulatory circuits involved in their synthesis, and the specific behavior of different cell types within the xylem. We will also focus on strategies aiming to reduce the lignin content or to modify the lignin composition of plants and present their impact on plant development. We will show that the ectopic expression of a specific transgene may have a different impact, depending on the genetic background, and that plants with a severe reduction in lignin content may undergo normal development. Lignification is currently benefiting enormously from recent developments in molecular biology and transgenesis, and the progress made opens the way for future developments to study how the walls of lignified plant cells are built and organized.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Feng He ◽  
Katja Machemer-Noonan ◽  
Philippe Golfier ◽  
Faride Unda ◽  
Johanna Dechert ◽  
...  

Abstract Background Understanding lignin biosynthesis and composition is of central importance for sustainable bioenergy and biomaterials production. Species of the genus Miscanthus have emerged as promising bioenergy crop due to their rapid growth and modest nutrient requirements. However, lignin polymerization in Miscanthus is poorly understood. It was previously shown that plant laccases are phenol oxidases that have multiple functions in plant, one of which is the polymerization of monolignols. Herein, we link a newly discovered Miscanthus laccase, MsLAC1, to cell wall lignification. Characterization of recombinant MsLAC1 and Arabidopsis transgenic plants expressing MsLAC1 were carried out to understand the function of MsLAC1 both in vitro and in vivo. Results Using a comprehensive suite of molecular, biochemical and histochemical analyses, we show that MsLAC1 localizes to cell walls and identify Miscanthus transcription factors capable of regulating MsLAC1 expression. In addition, MsLAC1 complements the Arabidopsis lac4–2 lac17 mutant and recombinant MsLAC1 is able to oxidize monolignol in vitro. Transgenic Arabidopsis plants over-expressing MsLAC1 show higher G-lignin content, although recombinant MsLAC1 seemed to prefer sinapyl alcohol as substrate. Conclusions In summary, our results suggest that MsLAC1 is regulated by secondary cell wall MYB transcription factors and is involved in lignification of xylem fibers. This report identifies MsLAC1 as a promising breeding target in Miscanthus for biofuel and biomaterial applications.


2020 ◽  
Author(s):  
Wenqing Zhang ◽  
Shengkui Zhang ◽  
Xianqin Lu ◽  
Can Li ◽  
Xingwang Liu ◽  
...  

Abstract Background:The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. Because the genome of elephant grass has not been deciphered, the study of its lignocellulose synthesis pathway and key genes is limited. Results:In this study, RNA sequencing (RNA-seq) combining with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials, were applied to reveal the genes regulating cellulose and lignin synthesis. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2 and T3. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the two most abundant metabolic pathways were phenylpropanemetabolism, starch and sucrose metabolism, which closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a ‘blue’ module highly correlated with cellulose synthesis and a ‘turquoise’ module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. In addition, the expression of CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H, CAD and CCR at different development stages were analyzed, and found that the content of lignocellulose was correlated with the expression levels of these structural genes. Conclusions:This study not only provides new insights into the molecular mechanisms of cellulose and lignin synthesis pathways in elephant grass, but also offers a new and extensive list of candidate genes for more specialized functional studies in the future which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Yu ◽  
Huizi Liu ◽  
Nan Zhang ◽  
Caiqiu Gao ◽  
Liwang Qi ◽  
...  

The MYB (v-myb avian myeloblastosis viral oncogene homolog) family is one of the largest transcription factor families in plants, and is widely involved in the regulation of plant metabolism. In this study, we show that a MYB4 transcription factor, BpMYB4, identified from birch (Betula platyphylla Suk.) and homologous to EgMYB1 from Eucalyptus robusta Smith and ZmMYB31 from Zea mays L. is involved in secondary cell wall synthesis. The expression level of BpMYB4 was higher in flowers relative to other tissues, and was induced by artificial bending and gravitational stimuli in developing xylem tissues. The expression of this gene was not enriched in the developing xylem during the active season, and showed higher transcript levels in xylem tissues around sprouting and near the dormant period. BpMYB4 also was induced express by abiotic stress. Functional analysis indicated that expression of BpMYB4 in transgenic Arabidopsis (Arabidopsis thaliana) plants could promote the growth of stems, and result in increased number of inflorescence stems and shoots. Anatomical observation of stem sections showed lower lignin deposition, and a chemical contents test also demonstrated increased cellulose and decreased lignin content in the transgenic plants. In addition, treatment with 100 mM NaCl and 200 mM mannitol resulted in the germination rate of the over-expressed lines being higher than that of the wild-type seeds. The proline content in transgenic plants was higher than that in WT, but MDA content was lower than that in WT. Further investigation in birch using transient transformation techniques indicated that overexpression of BpMYB4 could scavenge hydrogen peroxide and O2.– and reduce cell damage, compared with the wild-type plants. Therefore, we believe that BpMYB4 promotes stem development and cellulose biosynthesis as an inhibitor of lignin biosynthesis, and has a function in abiotic stress resistance.


1979 ◽  
Vol 30 (4) ◽  
pp. 621 ◽  
Author(s):  
CW Ford ◽  
IM Morrison ◽  
JR Wilson

Thirteen tropical and 11 temperate grasses were grown in controlled environment under day/night temperatures of 21/13, 27/19 and 32/24°C. Neutral detergent fibre (NDF) was prepared from the fifth leaf on the main stem of each plant, 2 days after it had reached maximum length. Panicum maximum var. trichoglume (tropical) and Lolium perenne cv. S24 (temperate) were also harvested at 4,8, and 12 days after this stage of development. For the tropical grasses NDF values, corrected for starch and protein, decreased with increasing growth temperature, whereas in the temperate species they increased. In the tropical group the decrease in NDF was due to a lower cellulose content, whereas hemicellulose and lignin levels generally tended to increase slightly with increasing temperature. In the temperate grasses, lignin, hemicellulose and cellulose levels all showed a consistent increase with growth temperature. At each growth temperature the lignin content of the species in the tropical group had a significant negative correlation with in vitro digestibility, and lignin appeared to be more closely associated with hemicellulose than with cellulose. In contrast, at each temperature, variation in digestibility between species of the temperate group was not correlated with lignin. Levels of cell wall components in the later-harvested material from Lolium varied in a similar manner to that of the younger growth stage, whereas older Panicum cell wall constituents showed more variability.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4338
Author(s):  
Mingtong Li ◽  
Chenxia Cheng ◽  
Xinfu Zhang ◽  
Suping Zhou ◽  
Caihong Wang ◽  
...  

A disorder in pears that is known as ‘hard-end’ fruit affects the appearance, edible quality, and market value of pear fruit. RNA-Seq was carried out on the calyx end of ‘Whangkeumbae’ pear fruit with and without the hard-end symptom to explore the mechanism underlying the formation of hard-end. The results indicated that the genes in the phenylpropanoid pathway affecting lignification were up-regulated in hard-end fruit. An analysis of differentially expressed genes (DEGs) identified three NAC transcription factors, and RT-qPCR analysis of PpNAC138, PpNAC186, and PpNAC187 confirmed that PpNAC187 gene expression was correlated with the hard-end disorder in pear fruit. A transient increase in PpNAC187 was observed in the calyx end of ‘Whangkeumbae’ fruit when they began to exhibit hard-end symptom. Concomitantly, the higher level of PpCCR and PpCOMT transcripts was observed, which are the key genes in lignin biosynthesis. Notably, lignin content in the stem and leaf tissues of transgenic tobacco overexpressing PpNAC187 was significantly higher than in the control plants that were transformed with an empty vector. Furthermore, transgenic tobacco overexpressing PpNAC187 had a larger number of xylem vessel elements. The results of this study confirmed that PpNAC187 functions in inducing lignification in pear fruit during the development of the hard-end disorder.


2020 ◽  
Vol 21 (17) ◽  
pp. 6094
Author(s):  
Fabien Baldacci-Cresp ◽  
Julien Le Roy ◽  
Brigitte Huss ◽  
Cédric Lion ◽  
Anne Créach ◽  
...  

Lignin is present in plant secondary cell walls and is among the most abundant biological polymers on Earth. In this work we investigated the potential role of the UGT72E gene family in regulating lignification in Arabidopsis. Chemical determination of floral stem lignin contents in ugt72e1, ugt72e2, and ugt72e3 mutants revealed no significant differences compared to WT plants. In contrast, the use of a novel safranin O ratiometric imaging technique indicated a significant increase in the cell wall lignin content of both interfascicular fibers and xylem from young regions of ugt72e3 mutant floral stems. These results were globally confirmed in interfascicular fibers by Raman microspectroscopy. Subsequent investigation using a bioorthogonal triple labelling strategy suggested that the augmentation in lignification was associated with an increased capacity of mutant cell walls to incorporate H-, G-, and S-monolignol reporters. Expression analysis showed that this increase was associated with an up-regulation of LAC17 and PRX71, which play a key role in lignin polymerization. Altogether, these results suggest that UGT72E3 can influence the kinetics of lignin deposition by regulating monolignol flow to the cell wall as well as the potential of this compartment to incorporate monomers into the growing lignin polymer.


2020 ◽  
Vol 117 (6) ◽  
pp. 3281-3290 ◽  
Author(s):  
Lina Gallego-Giraldo ◽  
Chang Liu ◽  
Sara Pose-Albacete ◽  
Sivakumar Pattathil ◽  
Angelo Gabriel Peralta ◽  
...  

There is considerable interest in engineering plant cell wall components, particularly lignin, to improve forage quality and biomass properties for processing to fuels and bioproducts. However, modifying lignin content and/or composition in transgenic plants through down-regulation of lignin biosynthetic enzymes can induce expression of defense response genes in the absence of biotic or abiotic stress. Arabidopsis thaliana lines with altered lignin through down-regulation of hydroxycinnamoyl CoA:shikimate/quinate hydroxycinnamoyl transferase (HCT) or loss of function of cinnamoyl CoA reductase 1 (CCR1) express a suite of pathogenesis-related (PR) protein genes. The plants also exhibit extensive cell wall remodeling associated with induction of multiple cell wall-degrading enzymes, a process which renders the corresponding biomass a substrate for growth of the cellulolytic thermophile Caldicellulosiruptor bescii lacking a functional pectinase gene cluster. The cell wall remodeling also results in the release of size- and charge-heterogeneous pectic oligosaccharide elicitors of PR gene expression. Genetic analysis shows that both in planta PR gene expression and release of elicitors are the result of ectopic expression in xylem of the gene ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE 1 (ADPG1), which is normally expressed during anther and silique dehiscence. These data highlight the importance of pectin in cell wall integrity and the value of lignin modification as a tool to interrogate the informational content of plant cell walls.


Sign in / Sign up

Export Citation Format

Share Document