scholarly journals A defect-resistant Co–Ni superalloy for 3D printing

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean P. Murray ◽  
Kira M. Pusch ◽  
Andrew T. Polonsky ◽  
Chris J. Torbet ◽  
Gareth G. E. Seward ◽  
...  

Abstract Additive manufacturing promises a major transformation of the production of high economic value metallic materials, enabling innovative, geometrically complex designs with minimal material waste. The overarching challenge is to design alloys that are compatible with the unique additive processing conditions while maintaining material properties sufficient for the challenging environments encountered in energy, space, and nuclear applications. Here we describe a class of high strength, defect-resistant 3D printable superalloys containing approximately equal parts of Co and Ni along with Al, Cr, Ta and W that possess strengths in excess of 1.1 GPa in as-printed and post-processed forms and tensile ductilities of greater than 13% at room temperature. These alloys are amenable to crack-free 3D printing via electron beam melting (EBM) with preheat as well as selective laser melting (SLM) with limited preheat. Alloy design principles are described along with the structure and properties of EBM and SLM CoNi-base materials.

2014 ◽  
Vol 783-786 ◽  
pp. 2617-2622 ◽  
Author(s):  
Livia Raquel C. Malheiros ◽  
Roberto B. Figueiredo ◽  
Terence G. Langdon

High-Pressure Torsion (HPT) is widely used to refine the structure of metallic materials through the use of severe plastic deformation. This technique is used in this report to process different magnesium alloys using various processing conditions. The high hydrostatic pressure allows processing of these materials at room temperature without cracking. The structure was characterized and hardness distribution was determined at different areas of the processed samples. The results show significant structure refinement and increased hardness. The evolution of the structure and hardness depends on the alloying and HPT processing conditions.


2018 ◽  
Vol 941 ◽  
pp. 1366-1371
Author(s):  
Masahiro Sakata ◽  
Jong Yeong Oh ◽  
Ken Cho ◽  
Hiroyuki Y. Yasuda ◽  
Mitsuharu Todai ◽  
...  

In the present study, effects of heat treatment on microstructures and tensile properties of the cylindrical bars of Ti-48Al-2Cr-2Nb (at.%) alloy with unique layered microstructure consisting of equiaxed γ grains region (γ band) and duplex-like region fabricated by electron beam melting (EBM) were investigated. We found that it is possible to control width of the γ bands (Wγ) by heat treatments at 1100°C and 1190°C. The Wγ increases with decreasing heat treatment temperature. The bars heat-treated at 1190°C exhibit high elongation of 2.9% at room temperature (RT) with maintaining high strength. The RT elongation increases with increasing the Wγ because of increasing deformable regions. In contrast, the RT elongation of the bars decreases with increasing the Wγ when Wγ is very large. This is because the large γ band leads intergranular fracture. These results indicate that there is appropriate width for the γ band to obtain excellent tensile properties at RT.


2020 ◽  
Vol 184 ◽  
pp. 01031
Author(s):  
Utkarshika Chandra ◽  
Rajesh Porwal

Metallic metals are governed by their mechanical properties. Ductility and Strength two most significant properties behave as two opposite poles while metal is manufactured by conventional methods. Additive manufacturing however acts as a bridge binding two into more of a proportional relationship. Additive manufacturing commonly referred as 3D Printing reduces the tact time along with high dimensional accuracies hence it has turned out to be the most researched technologies in the recent times. Out of several 3D Printing methods Selective laser melting and Electron beam melting prove more efficient in increasing the strength along with ductility by significantly altering the grain structure thus creating an array of properties which are different from their contemporaries. The paper deals with the effects of the two processes along with the challenges faced due to the defects risen during the processing in order to optimally decide the process to be taken up for a selected metallic metal


Alloy Digest ◽  
1985 ◽  
Vol 34 (12) ◽  

Abstract ALUMINUM 713.0 is an aluminum-base casting alloy that ages at room temperature to provide high-strength sand and permanent-mold castings. It has a good combination of mechanical properties and its corrosion resistance is equivalent to that of the aluminum-silicon alloys. It is dimensionally stable. Among its many uses are housings, machinery parts, fittings, lever arms and brackets. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-263. Producer or source: Various aluminum companies.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5042
Author(s):  
Jaeyoung Kwon ◽  
Junhyeok Ock ◽  
Namkug Kim

3D printing technology has been extensively applied in the medical field, but the ability to replicate tissues that experience significant loads and undergo substantial deformation, such as the aorta, remains elusive. Therefore, this study proposed a method to imitate the mechanical characteristics of the aortic wall by 3D printing embedded patterns and combining two materials with different physical properties. First, we determined the mechanical properties of the selected base materials (Agilus and Dragonskin 30) and pattern materials (VeroCyan and TPU 95A) and performed tensile testing. Three patterns were designed and embedded in printed Agilus–VeroCyan and Dragonskin 30–TPU 95A specimens. Tensile tests were then performed on the printed specimens, and the stress-strain curves were evaluated. The samples with one of the two tested orthotropic patterns exceeded the tensile strength and strain properties of a human aorta. Specifically, a tensile strength of 2.15 ± 0.15 MPa and strain at breaking of 3.18 ± 0.05 mm/mm were measured in the study; the human aorta is considered to have tensile strength and strain at breaking of 2.0–3.0 MPa and 2.0–2.3 mm/mm, respectively. These findings indicate the potential for developing more representative aortic phantoms based on the approach in this study.


Author(s):  
Minami Matsumoto ◽  
Ken Kimura ◽  
Natsuko Sugiura

AbstractDuplex stainless steels (DSSs), which consist of ferrite and austenite phases, are widely used owing to their high strength and good corrosion resistance. However, the oxidation behavior of DSSs is extremely complicated because they have dual phases. In this study, changes in the scale and the metal substrate during oxidation were investigated. UNS S32101 (Fe-21.5%Cr–5%Mn–1.5%Ni–0.3%Mo–0.22%N), which is a typical type of DSS, was annealed at 1473 K for up to 36 ks in air. The microstructure of UNS S32101 consisted of austenite/ferrite phases, the ratio of which was 50:50 at room temperature. After oxidation, Cr, Mn-oxide formed predominantly. The metal substrate beneath the scale changed mostly to ferrite. In the same region, depletion of Mn and N concentrations resulted. The decrease in Mn was due to the formation of Cr, Mn-oxide. In addition, it was revealed that N content of the metal substrate decreased due to the formation of N2 gas along with the depletion of Mn. It was assumed that the decrease in Mn and N, which are austenite-stabilized elements, led to an increase in ferrite in the depletion area of Mn and N. From this result, it was expected that the compositional changes in the Mn/N depletion area were caused by the oxidation of steel.


1990 ◽  
Vol 92 (1) ◽  
pp. 11-29
Author(s):  
Volker Rüdinger ◽  
Craig I. Ricketts ◽  
Jürgen G. Wilhelm

2014 ◽  
Vol 966-967 ◽  
pp. 549-556 ◽  
Author(s):  
Martin Müller ◽  
Réjane Hörhold ◽  
Marion Merklein ◽  
Gerson Meschut

In transportation sector the reduction of moving masses without the decrease of safety parameters is a key factor for future economic success. One possible approach for this is the use of different metallic materials in composite construction. Therefore, it is essential to establish a reliable component connection by means of suitable and cost-effective joining technologies. Mechanical joining technologies such as self-piercing riveting and mechanical clinching have proven to be effective methods for joining lightweight materials like aluminium and ductile steels. As these technologies require formability or pre-holing of the joining partners, the field of application is limited by the mechanical properties of the joining partners. Great potential for joining hot stamped steels, which have a very low elongation at fracture and therefore a low formability, offers the shear-clinching technology. For a systematic development of the shear-clinching technology, detailed investigations of the process are required. This paper presents an analysis of the material behaviour during the shear-clinching process and the reference process – clinching with pre-hole.


Sign in / Sign up

Export Citation Format

Share Document