scholarly journals Client proximity enhancement inside cellular membrane-less compartments governed by client-compartment interactions

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Daesun Song ◽  
Yongsang Jo ◽  
Jeong-Mo Choi ◽  
Yongwon Jung

Abstract Membrane-less organelles or compartments are considered to be dynamic reaction centers for spatiotemporal control of diverse cellular processes in eukaryotic cells. Although their formation mechanisms have been steadily elucidated via the classical concept of liquid–liquid phase separation, biomolecular behaviors such as protein interactions inside these liquid compartments have been largely unexplored. Here we report quantitative measurements of changes in protein interactions for the proteins recruited into membrane-less compartments (termed client proteins) in living cells. Under a wide range of phase separation conditions, protein interaction signals were vastly increased only inside compartments, indicating greatly enhanced proximity between recruited client proteins. By employing an in vitro phase separation model, we discovered that the operational proximity of clients (measured from client–client interactions) could be over 16 times higher than the expected proximity from actual client concentrations inside compartments. We propose that two aspects should be considered when explaining client proximity enhancement by phase separation compartmentalization: (1) clients are selectively recruited into compartments, leading to concentration enrichment, and more importantly, (2) recruited clients are further localized around compartment-forming scaffold protein networks, which results in even higher client proximity.

2020 ◽  
Vol 21 (2) ◽  
pp. 466 ◽  
Author(s):  
Charles Banliat ◽  
Guillaume Tsikis ◽  
Valérie Labas ◽  
Ana-Paula Teixeira-Gomes ◽  
Emmanuelle Com ◽  
...  

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4–5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4–6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


Author(s):  
Shangfei Wei ◽  
Tianming Zhao ◽  
Jie Wang ◽  
Xin Zhai

: Allostery is an efficient and particular regulatory mechanism to regulate protein functions. Different from conserved orthosteric sites, allosteric sites have distinctive functional mechanism to form the complex regulatory network. In drug discovery, kinase inhibitors targeting the allosteric pockets have received extensive attention for the advantages of high selectivity and low toxicity. The approval of trametinib as the first allosteric inhibitor validated that allosteric inhibitors could be used as effective therapeutic drugs for treatment of diseases. To date, a wide range of allosteric inhibitors have been identified. In this perspective, we outline different binding modes and potential advantages of allosteric inhibitors. In the meantime, the research processes of typical and novel allosteric inhibitors are described briefly in terms of structureactivity relationships, ligand-protein interactions and in vitro and in vivo activity. Additionally, challenges as well as opportunities are presented.


Cancers ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 159
Author(s):  
Tina Schönberger ◽  
Joachim Fandrey ◽  
Katrin Prost-Fingerle

Hypoxia is a key characteristic of tumor tissue. Cancer cells adapt to low oxygen by activating hypoxia-inducible factors (HIFs), ensuring their survival and continued growth despite this hostile environment. Therefore, the inhibition of HIFs and their target genes is a promising and emerging field of cancer research. Several drug candidates target protein–protein interactions or transcription mechanisms of the HIF pathway in order to interfere with activation of this pathway, which is deregulated in a wide range of solid and liquid cancers. Although some inhibitors are already in clinical trials, open questions remain with respect to their modes of action. New imaging technologies using luminescent and fluorescent methods or nanobodies to complement widely used approaches such as chromatin immunoprecipitation may help to answer some of these questions. In this review, we aim to summarize current inhibitor classes targeting the HIF pathway and to provide an overview of in vitro and in vivo techniques that could improve the understanding of inhibitor mechanisms. Unravelling the distinct principles regarding how inhibitors work is an indispensable step for efficient clinical applications and safety of anticancer compounds.


2021 ◽  
Vol 22 (2) ◽  
pp. 677
Author(s):  
Tausif Altamash ◽  
Wesam Ahmed ◽  
Saad Rasool ◽  
Kabir H. Biswas

Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Chen Chen ◽  
Yoshiaki Yamanaka ◽  
Koji Ueda ◽  
Peiying Li ◽  
Tamami Miyagi ◽  
...  

Arg (R)-rich dipeptide repeat proteins (DPRs; poly(PR): Pro-Arg and poly(GR): Gly-Arg), encoded by a hexanucleotide expansion in the C9ORF72 gene, induce neurodegeneration in amyotrophic lateral sclerosis (ALS). Although R-rich DPRs undergo liquid–liquid phase separation (LLPS), which affects multiple biological processes, mechanisms underlying LLPS of DPRs remain elusive. Here, using in silico, in vitro, and in cellulo methods, we determined that the distribution of charged Arg residues regulates the complex coacervation with anionic peptides and nucleic acids. Proteomic analyses revealed that alternate Arg distribution in poly(PR) facilitates entrapment of proteins with acidic motifs via LLPS. Transcription, translation, and diffusion of nucleolar nucleophosmin (NPM1) were impaired by poly(PR) with an alternate charge distribution but not by poly(PR) variants with a consecutive charge distribution. We propose that the pathogenicity of R-rich DPRs is mediated by disturbance of proteins through entrapment in the phase-separated droplets via sequence-controlled multivalent protein–protein interactions.


2020 ◽  
Vol 21 (16) ◽  
pp. 5638
Author(s):  
Jinhong Cho ◽  
Jinyoung Park ◽  
Eunice EunKyeong Kim ◽  
Eun Joo Song

Deubiquitinating enzymes regulate various cellular processes, particularly protein degradation, localization, and protein–protein interactions. The dysregulation of deubiquitinating enzyme (DUB) activity has been linked to several diseases; however, the function of many DUBs has not been identified. Therefore, the development of methods to assess DUB activity is important to identify novel DUBs, characterize DUB selectivity, and profile dynamic DUB substrates. Here, we review various methods of evaluating DUB activity using cell lysates or purified DUBs, as well as the types of probes used in these methods. In addition, we introduce some techniques that can deliver DUB probes into the cells and cell-permeable activity-based probes to directly visualize and quantify DUB activity in live cells. This review could contribute to the development of DUB inhibitors by providing important information on the characteristics and applications of various probes used to evaluate and detect DUB activity in vitro and in vivo.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


Crystals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 620 ◽  
Author(s):  
Hévila Brognaro ◽  
Sven Falke ◽  
Celestin Nzanzu Mudogo ◽  
Christian Betzel

Protein phase separation and protein liquid cluster formation have been observed and analysed in protein crystallization experiments and, in recent years, have been reported more frequently, especially in studies related to membraneless organelles and protein cluster formation in cells. A detailed understanding about the phase separation process preceding liquid dense cluster formation will elucidate what has, so far, been poorly understood—despite intracellular crowding and phase separation being very common processes—and will also provide more insights into the early events of in vitro protein crystallization. In this context, the phase separation and crystallization kinetics of concanavalin A were analysed in detail, which applies simultaneous dynamic light scattering and depolarized dynamic light scattering to obtain insights into metastable intermediate states between the soluble phase and the crystalline form. A multi-step mechanism was identified for ConA phase separation, according to the resultant ACF decay, acquired after an increase in the concentration of the crowding agent until a metastable ConA gel intermediate between the soluble and final crystalline phases was observed. The obtained results also revealed that ConA is trapped in a macromolecular network due to short-range intermolecular protein interactions and is unable to transform back into a non-ergodic solution.


2014 ◽  
Vol 25 (24) ◽  
pp. 3954-3961 ◽  
Author(s):  
Min Zeng ◽  
Wilfred A. van der Donk ◽  
Jie Chen

The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C–like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the Akt-mTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 869
Author(s):  
Yuan Su ◽  
Robert V. Stahelin

Viral protein 24 (VP24) from Ebola virus (EBOV) was first recognized as a minor matrix protein that associates with cellular membranes. However, more recent studies shed light on its roles in inhibiting viral genome transcription and replication, facilitating nucleocapsid assembly and transport, and interfering with immune responses in host cells through downregulation of interferon (IFN)-activated genes. Thus, whether VP24 is a peripheral protein with lipid-binding ability for matrix layer recruitment has not been explored. Here, we examined the lipid-binding ability of VP24 with a number of lipid-binding assays. The results indicated that VP24 lacked the ability to associate with lipids tested regardless of VP24 posttranslational modifications. We further demonstrate that the presence of the EBOV major matrix protein VP40 did not promote VP24 membrane association in vitro or in cells. Further, no protein–protein interactions between VP24 and VP40 were detected by co-immunoprecipitation. Confocal imaging and cellular membrane fractionation analyses in human cells suggested VP24 did not specifically localize at the plasma membrane inner leaflet. Overall, we provide evidence that EBOV VP24 is not a lipid-binding protein and its presence in the viral matrix layer is likely not dependent on direct lipid interactions.


Sign in / Sign up

Export Citation Format

Share Document