scholarly journals Lanthionine synthetase C–like protein 2 (LanCL2) is a novel regulator of Akt

2014 ◽  
Vol 25 (24) ◽  
pp. 3954-3961 ◽  
Author(s):  
Min Zeng ◽  
Wilfred A. van der Donk ◽  
Jie Chen

The serine/threonine protein kinase Akt controls a wide range of biochemical and cellular processes under the modulation of a variety of regulators. In this study, we identify the lanthionine synthetase C–like 2 (LanCL2) protein as a positive regulator of Akt activation in human liver cells. LanCL2 knockdown dampens serum- and insulin-stimulated Akt phosphorylation, whereas LanCL2 overexpression enhances these processes. Neither insulin receptor phosphorylation nor the interaction between insulin receptor substrate and phosphatidylinositide 3-kinase (PI3K) is affected by LanCL2 knockdown. LanCL2 also does not function through PP2A, a phosphatase of Akt. Instead, LanCL2 directly interacts with Akt, with a preference for inactive Akt. Moreover, we show that LanCL2 also binds to the Akt kinase mTORC2, but not phosphoinositide-dependent kinase 1. Whereas LanCL2 is not required for the Akt-mTORC2 interaction, recombinant LanCL2 enhances Akt phosphorylation by target of rapamycin complex 2 (mTORC2) in vitro. Finally, consistent with a function of Akt in regulating cell survival, LanCL2 knockdown increases the rate of apoptosis, which is reversed by the expression of a constitutively active Akt. Taken together, our findings reveal LanCL2 as a novel regulator of Akt and suggest that LanCL2 facilitates optimal phosphorylation of Akt by mTORC2 via direct physical interactions with both the kinase and the substrate.

2002 ◽  
Vol 16 (3) ◽  
pp. 552-562 ◽  
Author(s):  
Xiaoqin Xiang ◽  
Mingsheng Yuan ◽  
Ying Song ◽  
Neil Ruderman ◽  
Rong Wen ◽  
...  

Abstract The appearance of a complex between tyrosine-phosphorylated insulin receptor substrate 1 (IRS-1) and PI3K in a high-speed pellet fraction (HSP) is thought to be a key event in insulin action. Conversely, the disappearance of the IRS-1/PI3K complex from this fraction has been linked to insulin desensitization. The present study examines the role of 14-3-3, a specific phospho-serine binding protein, in mediating the disappearance of IRS-1 from the HSP after insulin treatment. An in vitro pull-down assay using recombinant 14-3-3 revealed that insulin enhances the association of 14-3-3 with IRS-1 in cultured adipocytes and that this is completely inhibited by wortmannin. An association of IRS-1 and 14-3-3 was also observed and was maximal after stimulation by insulin, when endogenous proteins were immunoprecipitated. Epidermal growth factor (EGF), 12-O-tetradecanoylphorbol-13-acetate, and okadaic acid, other agents that cause serine/threonine phosphorylation of IRS-1, also stimulated IRS binding to 14-3-3. The enhancement of IRS-1 binding to 14-3-3 by insulin was accompanied by movement of IRS-1 and the p85 subunit of PI3K from the HSP to the cytosol. In keeping with a key role of 14-3-3 in mediating this redistribution of IRS-1, the complexes of IRS-1 and 14-3-3 were found in the cytosol but not in the HSP of insulin-treated cells. In addition, colocalization of IRS-1 and 14-3-3 was observed in the cytoplasm after insulin treatment by confocal microscopy. Finally, the addition of a phosphorylated 14-3-3 binding peptide to an adipocyte homogenate (to remove 14-3-3 from IRS-1) increased the abundance of IRS-1/PI3K complexes in the HSP and decreased their abundance in the cytosol. These findings strongly suggest that 14-3-3 participates in the intracellular trafficking of IRS-1 by promoting the displacement of serine-phosphorylated IRS-1 from particular structures. They also suggest that 14-3-3 proteins could play an integral role in the process of insulin desensitization.


2004 ◽  
Vol 172 (5) ◽  
pp. 2803-2810 ◽  
Author(s):  
Ann E. Kelly-Welch ◽  
Helen Y. Wang ◽  
Ling-Mei Wang ◽  
Jacalyn H. Pierce ◽  
Gilbert Jay ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaolong Shao ◽  
Weitong Zhang ◽  
Mubarak Ishaq Umar ◽  
Hei Yuen Wong ◽  
Zijing Seng ◽  
...  

ABSTRACT Guanine (G)-rich sequences in RNA can fold into diverse RNA G-quadruplex (rG4) structures to mediate various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4s in prokaryotes are still elusive. We used QUMA-1, an rG4-specific fluorescent probe, to detect rG4 structures in a wide range of bacterial species both in vitro and in live cells and found rG4 to be an abundant RNA secondary structure across those species. Subsequently, to identify bacterial rG4 sites in the transcriptome, the model Escherichia coli strain and a major human pathogen, Pseudomonas aeruginosa, were subjected to recently developed high-throughput rG4 structure sequencing (rG4-seq). In total, 168 and 161 in vitro rG4 sites were found in E. coli and P. aeruginosa, respectively. Genes carrying these rG4 sites were found to be involved in virulence, gene regulation, cell envelope synthesis, and metabolism. More importantly, biophysical assays revealed the formation of a group of rG4 sites in mRNAs (such as hemL and bswR), and they were functionally validated in cells by genetic (point mutation and lux reporter assays) and phenotypic experiments, providing substantial evidence for the formation and function of rG4s in bacteria. Overall, our study uncovers important regulatory functions of rG4s in bacterial pathogenicity and metabolic pathways and strongly suggests that rG4s exist and can be detected in a wide range of bacterial species. IMPORTANCE G-quadruplex in RNA (rG4) mediates various biological functions and cellular processes in eukaryotic organisms. However, the presence, locations, and functions of rG4 are still elusive in prokaryotes. Here, we found that rG4 is an abundant RNA secondary structure across a wide range of bacterial species. Subsequently, the transcriptome-wide rG4 structure sequencing (rG4-seq) revealed that the model E. coli strain and a major human pathogen, P. aeruginosa, have 168 and 161 in vitro rG4 sites, respectively, involved in virulence, gene regulation, cell envelope, and metabolism. We further verified the regulatory functions of two rG4 sites in bacteria (hemL and bswR). Overall, this finding strongly suggests that rG4s play key regulatory roles in a wide range of bacterial species.


2001 ◽  
Vol 21 (1) ◽  
pp. 26-38 ◽  
Author(s):  
Kaku Tsuruzoe ◽  
Renee Emkey ◽  
Kristina M. Kriauciunas ◽  
Kohjiro Ueki ◽  
C. Ronald Kahn

ABSTRACT To investigate the roles of insulin receptor substrate 3 (IRS-3) and IRS-4 in the insulin-like growth factor 1 (IGF-1) signaling cascade, we introduced these proteins into 3T3 embryonic fibroblast cell lines prepared from wild-type (WT) and IRS-1 knockout (KO) mice by using a retroviral system. Following transduction of IRS-3 or IRS-4, the cells showed a significant decrease in IRS-2 mRNA and protein levels without any change in the IRS-1 protein level. In these cell lines, IGF-1 caused the rapid tyrosine phosphorylation of all four IRS proteins. However, IRS-3- or IRS-4-expressing cells also showed a marked decrease in IRS-1 and IRS-2 phosphorylation compared to the host cells. This decrease was accounted for in part by a decrease in the level of IRS-2 protein but occurred with no significant change in the IRS-1 protein level. IRS-3- or IRS-4-overexpressing cells showed an increase in basal phosphatidylinositol 3-kinase activity and basal Akt phosphorylation, while the IGF-1-stimulated levels correlated well with total tyrosine phosphorylation level of all IRS proteins in each cell line. IRS-3 expression in WT cells also caused an increase in IGF-1-induced mitogen-activated protein kinase phosphorylation and egr-1 expression (∼1.8- and ∼2.4-fold with respect to WT). In the IRS-1 KO cells, the impaired mitogenic response to IGF-1 was reconstituted with IRS-1 to supranormal levels and was returned to almost normal by IRS-2 or IRS-3 but was not improved by overexpression of IRS-4. These data suggest that IRS-3 and IRS-4 may act as negative regulators of the IGF-1 signaling pathway by suppressing the function of other IRS proteins at several steps.


2002 ◽  
Vol 22 (4) ◽  
pp. 1016-1026 ◽  
Author(s):  
Rachel Zhande ◽  
John J. Mitchell ◽  
Jiong Wu ◽  
Xiao Jian Sun

ABSTRACT Insulin receptor substrate 1 (IRS-1) plays an important role in the insulin signaling cascade. In vitro and in vivo studies from many investigators have suggested that lowering of IRS-1 cellular levels may be a mechanism of disordered insulin action (so-called insulin resistance). We previously reported that the protein levels of IRS-1 were selectively regulated by a proteasome degradation pathway in CHO/IR/IRS-1 cells and 3T3-L1 adipocytes during prolonged insulin exposure, whereas IRS-2 was unaffected. We have now studied the signaling events that are involved in activation of the IRS-1 proteasome degradation pathway. Additionally, we have addressed structural elements in IRS-1 versus IRS-2 that are required for its specific proteasome degradation. Using ts20 cells, which express a temperature-sensitive mutant of ubiquitin-activating enzyme E1, ubiquitination of IRS-1 was shown to be a prerequisite for insulin-induced IRS-1 proteasome degradation. Using IRS-1/IRS-2 chimeric proteins, the N-terminal region of IRS-1 including the PH and PTB domains was identified as essential for targeting IRS-1 to the ubiquitin-proteasome degradation pathway. Activation of phosphatidylinositol 3-kinase is necessary but not sufficient for activating and sustaining the IRS-1 ubiquitin-proteasome degradation pathway. In contrast, activation of mTOR is not required for IRS-1 degradation in CHO/IR cells. Thus, our data provide insight into the molecular mechanism of insulin-induced activation of the IRS-1 ubiquitin-proteasome degradation pathway.


2004 ◽  
Vol 24 (22) ◽  
pp. 9726-9735 ◽  
Author(s):  
Julie A. Nagle ◽  
Zhefu Ma ◽  
Maura A. Byrne ◽  
Morris F. White ◽  
Leslie M. Shaw

ABSTRACT The insulin receptor substrate (IRS) proteins are adaptor molecules that integrate signals generated by receptors that are implicated in human breast cancer. We investigated the specific contribution of IRS-2 to mammary tumor progression using transgenic mice that express the polyoma virus middle T antigen (PyV-MT) in the mammary gland and IRS-2-null (IRS-2−/−) mice. PyV-MT-induced tumor initiation and growth were similar in wild-type (WT) and IRS-2−/− mice. However, the latency and incidence of metastasis were significantly decreased in the absence of IRS-2 expression. The contribution of IRS-2 to metastasis is intrinsic to the tumor cells, because IRS-2−/− mammary tumor cells did not metastasize when grown orthotopically in the mammary fat pads of WT mice. WT and IRS-2−/− tumors contained similar numbers of mitotic cells, but IRS-2−/− tumors had a higher incidence of apoptosis than did WT tumors. In vitro, IRS-2−/− mammary tumor cells were less invasive and more apoptotic in response to growth factor deprivation than their WT counterparts. In contrast, IRS-1−/− tumor cells, which express only IRS-2, were highly invasive and were resistant to apoptotic stimuli. Collectively, our findings reveal an important contribution of IRS-2 to breast cancer metastasis.


2010 ◽  
Vol 18 (2) ◽  
pp. 34-37 ◽  
Author(s):  
A. Berquand ◽  
A. Holloschi ◽  
M. Trendelenburg ◽  
P. Kioschis

Mechanical properties of cells are determined by the dynamic behavior of the cytoskeleton and physical interactions with the environment. The cytoskeleton, composed of actin filaments, intermediate filaments, and microtubules, is vital for numerous key cellular processes, such as cell division, vesicle trafficking, cell contraction, cell motility, and cell signaling. There is increasing evidence that deregulation of cytoskeletal components like disassembly of actin and tubulin filaments is an important parameter in cellular pathology. Thus, significant alterations of the mechanical phenotype of the cell and its surrounding microenvironment are reported to be involved in aberrant cellular processes and successively contribute to onset and progression of diseases such as cancer, malaria, and possibly neurodegeneration. In vitro and ex vivo biomechanical studies have shown that cancer cells have significantly decreased elastic moduli than their normal counterparts, a characteristic that is attributed to the ability of cancer cells to metastasize or spread.


2003 ◽  
Vol 14 (4) ◽  
pp. 401-405 ◽  
Author(s):  
Alexander Beck ◽  
Klaus Moeschel ◽  
Martin Deeg ◽  
Hans-Ulrich Häring ◽  
Wolfgang Voelter ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
pp. 988-1000 ◽  
Author(s):  
Qian Zhang ◽  
Qingchao Tang ◽  
Dandan Qin ◽  
Lei Yu ◽  
Rui Huang ◽  
...  

MicroRNAs (miRNAs) are dysregulated in many types of malignant diseases, including colorectal cancer. miRNA 30a (miR-30a) is a member of the miR-30 family and has been implicated in many types of cancers. In this study, we determined the expression of miR-30a in human colon cancer tissues and cell lines. miR-30a was found to be significantly downregulated in both the tissues and cell lines. Furthermore, overexpression of miR-30a inhibited, while silencing of miR-30a promoted, cell proliferation, migration, and invasion in vitro . Consistently, stable overexpression of miR-30a suppressed the growth of colon cancer cell xenografts in vivo . Moreover, bioinformatic algorithms and luciferase reporter assays revealed that insulin receptor substrate 2 (IRS2) is a direct target of miR-30a. Further functional studies suggested that repression of IRS2 by miR-30a partially mediated the tumor suppressor effect of miR-30a. In addition, miR-30a inhibited constitutive phosphorylation of Akt by targeting IRS2. Additionally, clinicopathological analysis indicated that miR-30a has an inverse correlation with the staging in patients with colon cancer. Taken together, our study provides the first evidence that miR-30a suppressed colon cancer cell growth through inhibition of IRS2. Thus, miR-30a might serve as a promising therapeutic strategy for colon cancer treatment.


2017 ◽  
Vol 59 (3) ◽  
pp. 257-268 ◽  
Author(s):  
Raquel S Campello ◽  
Luciana A Fátima ◽  
João Nilton Barreto-Andrade ◽  
Thais F Lucas ◽  
Rosana C Mori ◽  
...  

Impaired insulin-stimulated glucose uptake involves reduced expression of the GLUT4 (solute carrier family 2 facilitated glucose transporter member 4, SLC2A4 gene). 17β-estradiol (E2) modulates SLC2A4/GLUT4 expression, but the involved mechanisms are unclear. Although E2 exerts biological effects by binding to estrogen receptors 1/2 (ESR1/2), which are nuclear transcriptional factors; extranuclear effects have also been proposed. We hypothesize that E2 regulates GLUT4 through an extranuclear ESR1 mechanism. Thus, we investigated the effects of E2 upon (1) subcellular distribution of ESRs and the proto-oncogene tyrosine-protein kinases (SRC) involvement; (2) serine/threonine-protein kinase (AKT) activation; (3) Slc2a4/GLUT4 expression and (4) GLUT4 subcellular distribution and glucose uptake in 3T3-L1 adipocytes. Differentiated 3T3-L1 adipocytes were cultivated or not with E2 for 24 h, and additionally treated or not with ESR1-selective agonist (PPT), ESR1-selective antagonist (MPP) or selective SRC inhibitor (PP2). Subcellular distribution of ESR1, ESR2 and GLUT4 was analyzed by immunocytochemistry; Slc2a4 mRNA and GLUT4 were quantified by qPCR and Western blotting, respectively; plasma membrane GLUT4 translocation and glucose uptake were analyzed under insulin stimulus for 20 min or not. E2 induced (1) translocation of ESR1, but not of ESR2, from nucleus to plasma membrane and AKT phosphorylation, effects mimicked by PPT and blocked by MPP and PP2; (2) increased Slc2a4/GLUT4 expression and (3) increased insulin-stimulated GLUT4 translocation and glucose uptake. In conclusion, E2 treatment promoted a SRC-mediated nucleus-plasma membrane shuttle of ESR1, and increased AKT phosphorylation, Slc2a4/GLUT4 expression and plasma membrane GLUT4 translocation; consequently, improving insulin-stimulated glucose uptake. These results unravel mechanisms through which estrogen improves insulin sensitivity.


Sign in / Sign up

Export Citation Format

Share Document