Effect of Limestone Powder in Self Consolidating Lightweight Foam Concrete

2018 ◽  
Vol 280 ◽  
pp. 469-475
Author(s):  
Ahmad Ruslan Mohd Ridzuan ◽  
M.A. Mohd Fauzi ◽  
Mohd Fadzil Arshad ◽  
M.S. Harun ◽  
N. Jasmi

Self-Consolidating Lightweight Foam Concrete (SCLFC) is known as a concrete which has no requirement towards vibration or compaction effort due to its flowability and capability in filling and achieving full compaction in reinforcement. The main component in SCLFC is cement. Cement is a basic component of concrete that used in construction industry. However, it is also the main source of Carbon Dioxide (CO2) emission. If this component of concrete is replaced with other materials, it surely can help in reducing the emission of CO2. Limestone powder can be replacement with the cement content in SCLFC. Therefore, the aim of this paper is to determine the effect of limestone powder on SCLFC in term of flowability and compressive strength. The specimens were tested for compressive strength at 3, 7, and 28 days. The result indicated the flowability of SCLFC increase with the increase of percentages of limestone powder replacement. Meanwhile, the highest compressive strength of SCLFC containing 10% limestone powder replacement give better performance than the normal SCLFC. Based on the finding, SCLFC containing 10% limestone powder replacement can be categorized same as a conventional concrete hence it can be utilized for construction purposes. Limestone powder can also acts as an alternative replacement in concrete for replacing the cement.

2019 ◽  
Vol 81 (4) ◽  
Author(s):  
Mohd Afiq Mohd Fauzi ◽  
Ahmad Ruslan Mohd Ridzuan ◽  
Nurliza Jasmi ◽  
Mohd Fadzil Arshad ◽  
Mohd Shafee Harun

Self-Consolidating Lightweight Concrete (SCLC) is relatively a new concept and can be regarded as a revolutionary development in the field of concrete technology. It is a type of concrete that might not require vibration for placing it and could be produced by reducing the density of concrete. However, the density of normal Self Consolidating Concrete (SCC) is similar to normal concrete approximately 2400kg/m3. By using foaming agent, the density of concrete can be reduced up to 1800kg/m3. Due to the heavy density of concrete, it will give the initial higher supply cost over conventional concrete, has slowed down its application to general construction. It is also hard to handle for construction and transportation. Therefore, it is advantages to produce SCC with lower density to provide benefit and enhancement of its performance by a combination of two types of concrete technology that is SCC technology and Lightweight Foam Concrete technology. This paper was focused to identify the effect of foaming agent on the fresh properties and compressive strength of SCLC. The influence of foaming agent contained in the range from 0 second, 1 second, 2 second, 3 second and 4 second to the strength characteristic identified in the SCLC. The specimens were tested for compressive strength at 3, 7, 14 and 28 days. The result indicated that the compressive strength of SCLC is decreasing when foaming agent content was added. Meanwhile, the flowability of SCLC is increasing when foaming agent content added. Based on the finding, SCLC containing 3 second of foaming agent is achieving the density target, which is 1800kg/m3 and better compressive strength performance.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Noridah Mohamad ◽  
A. I. Khalil ◽  
A. A. Abdul Samad ◽  
W. I. Goh

This paper presents the structural behaviour of precast lightweight foam concrete sandwich panel (PFLP) under flexure, studied experimentally and theoretically. Four (4) full scale specimens with a double shear steel connector of 6 mm diameter and steel reinforcement of 9 mm diameter were cast and tested. The panel’s structural behavior was studied in the context of its ultimate flexure load, crack pattern, load-deflection profile, and efficiency of shear connectors. Results showed that the ultimate flexure load obtained from the experiment is influenced by the panel’s compressive strength and thickness. The crack pattern recorded in each panel showed the emergence of initial cracks at the midspan which later spread toward the left and right zones of the slab. The theoretical ultimate load for fully composite and noncomposite panels was obtained from the classical equations. All panel specimens were found to behave in a partially composite manner. Panels PLFP-3 and PLFP-4 with higher compressive strength and total thickness managed to obtain a higher degree of compositeness which is 30 and 32.6 percent, respectively.


Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


2013 ◽  
Vol 634-638 ◽  
pp. 2746-2751 ◽  
Author(s):  
Noridah Mohamad ◽  
Najmuddin Hassan

The progressive research upon the issue on renewal technology that can improve the construction industry has initiated the study of Precast Lightweight Foam Concrete Sandwich Panel (PLFP) as an alternative to Industrialize Building System (IBS). This paper reports the analysis of structural behavior of PLFP with double shear connectors under axial load. The PLFP panel consists of two wythes which enclosed a layer of polystyrene layer. Six (6 mm) rebar was used as the vertical and horizontal reinforcement and 9 mm steel bar bent at 450 was used as the connector. Full scaled panel was tested under axial load till failure. It was found that PLFP panel with double shear truss connector has higher ultimate strength capacity compared to PLFP with single shear connectors ehen tested under axial load.


Author(s):  
Musaib Bashir Dar

Abstract: In this developing era concrete and cement mortar are widely used by the construction industry, with this development. Large number of industrial wastes are generated and if these wastes are not properly used it will create severe problems, keeping the environment in mind, concrete engineers are trying to find some alternative materials which will not only replaces the cement content but also improves strength of concrete. As we also know that during the manufacturing of cement large amount of Co2 is released into the environment, but if we use such material that will replace the quantity of cement content therefore indirectly, we are contributing towards the prevention of our planet from global warming and other pollutions. Also, in this research work the Rice Husk Ash is used. the rice husk ash obtained from the rice processing units, by adding this product with concrete, not only replaces the cement content but also increases the strength of concrete like compressive strength etc. The Rice husk ash was incorporated with concrete with varying percentages of 2.5% ,5% ,7.5%, & 10%. the proper codal precautions were followed during the manufacture of concrete cubes of 150x150x150mm. it was concluded that the strength of concrete increased by incorporated the rice husk ash. Keywords: Concrete, RHA, Compressive strength, Industrial wastes, Cement etc


2021 ◽  
Vol 920 (1) ◽  
pp. 012009
Author(s):  
M K Yew ◽  
M C Yew ◽  
J H Beh ◽  
L H Saw ◽  
Y L Lee ◽  
...  

Abstract Concrete is widely used in the industry due to its effectiveness in terms of cost and strength. In this study, the introduction of bio-based aggregate as coarse aggregate in lightweight foam concrete will be investigated to find a better solution for fire incidents that are commonly happened. As such, lightweight foam concrete (LWFC) has been applied in many buildings especially in non-load bearing wall to enhance thermal conductivity, sound insulation and fire resistance. The aim of this research is to investigate the effect of incorporating bio-based aggregate namely oil palm shell (OPS) into lightweight form concrete in terms of strength properties and fire resistance. Three different concrete mix was designed containing different percentage of OPS aggregate replacement (0, 5, 10 and 15%). From the result, the compressive strength of the LWFC-CTR mixture had achieved the highest compressive strength at 28-day, which is recorded at 3.82 MPa. The fire resistance of LWFC-OPS 15% had showed a positive outcome with improvement by almost 23.5% compared to control mix at 15 minutes. Therefore, the major finding of this research is the incorporation of eco-friendly OPS aggregate has improved the fire resistance of lightweight foam concrete, which can be used as an alternative solution for non-load bearing walls.


2018 ◽  
Vol 8 (3) ◽  
pp. 2969-2974 ◽  
Author(s):  
N. A. Memon ◽  
M. A. Memon ◽  
N. A. Lakho ◽  
F. A. Memon ◽  
M. A. Keerio ◽  
...  

Self-compacted concrete (SCC) is cast in the formwork without compaction and it fulfills the formwork due to its own weight. SCC is considered to have many advantages in comparison with conventional concrete like improved construction quality, faster construction activity, reduced cost etc. SCC is produced with the same ingredients of normal concrete. However, cementitious materials are also adopted to replace the cement content in SCC in order to use waste materials from industries and agricultural products. To further enhance the performance of SCC, different types of fibers are tried in order to produce fiber reinforced SCC. The fibers in the concrete bridge the cracks and diffuse the crack propagation which improves mechanical properties. In developed countries SCC has reasonable acceptance in construction industry but in developing countries like Pakistan has not gained acceptance. This paper is focused on undertaking a review of SCC with cement replacement and fiber reinforcement materials. The main objective of this paper is to compile the literature in order to understand the various properties of SCC in fresh and hardened state when these cement replacement materials and fibers are used.


Author(s):  
Ruqaya F. Hamada ◽  
Awham M. Hameed

: The foam concrete has many advantages when compared to conventional concrete such as advanced strength to weight ratio as well as the material for energy-saving construction. This concrete has broadly been utilized in the constructing manufacturing. The current work presents an appraisal of foamed concrete ingredients, fabricating methods, as well as the foamed concrete features. Furthermore, this literature appraisal aims for providing a complete vision about the tests, including compressive strength, density, porosity, splitting tensile strength and water absorption of foamed concrete. Also, this paper focuses to study the development and applications of the foam concrete. The advantages and disadvantages of this type of concrete were presented in details through this article.


2021 ◽  
Vol 39 ◽  
pp. 85-93
Author(s):  
Dissanayake Dmdok

This investigation was carried out to identify the engineering properties of compressed interlock earth blocks manufactured from locally available lateritic soil and introduce to use the manufactured soil blocks to minimize the material and finishing cost for the low cost housing projects. The soil samples used in this study were well-graded lateritic sandy soil which has the composition of 1.9% gravel, 94% sand and 4.1% silt / clay. These soil samples were passed through the 100-mesh sieve and mixed with ordinary Portland cement to prepare the admixture. While compressing through a hydraulics jack by varying the compositions and the volume of soil-cement admixtures, compaction soil blocks were manufactured in a locally fabricated 250 mm x125 mm x100 mm standard steel mould. The manufactured soil blocks allowed to cure while spraying small quantity of water and covering with polythene for 28 days. Average compressive strengths of soil blocks made with 5% cement with 1.6:1 and 1.8:1 volume compactions were 1.3 Mpa and 1.9 Mpa, respectively. However, both compressive strength values were less than the standard limits of 2.8 MPa stated in SLS 1382:2009, local standards for soil blocks used for construction industry. However, soil blocks made with 10% cement under same compaction ratios attained compressive strengths of 3.0 MPa and 3.6 MPa respectively and it is above the required standards limits. However, 15% and 20% cement containing earth blocks have much higher compressive strengths but increase the cost of production. Regression analysis results confirmed the strong correlation between cement content and the compressive strength of the soil bricks. The soil bricks manufactured with more than 12.06% cement soil mix by maintaining compaction ratio into 1.6:1 or Soil bricks manufactured with more than 5.16% cement mix by maintaining compaction ratio into 1.8:1 will produce standards soil bricks for construction industry and these results further confirmed that wet and dry compressive strength of soil bricks will increase with increasing the compaction ratio and the cement content. However, when considering the compressive strength, water absorption level and cost effectiveness, soil bricks manufactured by maintaining compaction ratio into 1.8:1 with more than 5.16% cement mix will produce required standards cost effective soil bricks for construction industry.


Author(s):  
Ben Ngene ◽  
Gideon Bamigboye ◽  
Osato Asemota

Weight and Environmental concerns are two elements that have made the search for alternative materials of construction critical in today’s construction industry. The importance of finding a solution to the problem has given rise to the use of non-degradable materials. This study examines the challenges of making such material as polystyrene used in product packaging a part of the structural element in construction. Such adventure it is envisaged reduced the volume and number of landfill sites in Nigeria where air pollution arising from dump sites affects the health of citizens. To achieve this aim, Styrofoam was used as a partial replacement for coarse aggregate (granite) by volume. The replacement was carried out in varying percentages of 10, 20 and 30% Styrofoam concretes respectively with a concrete mix ratio of 1:1:2. The result obtained showed that concrete produced using Styrofoam as the alternative aggregate possess lesser values of compressive strength when compared with the control of conventional concrete without Styrofoam. The optimal percentage of a replacement for Styrofoam concrete was 10% with a compressive strength of 21.33 N/mm2 while the control concrete had a compressive strength of 33.26 N/mm2. The loss of strength of Styrofoam concrete is compensated by the reduction of the requirement for landfill sites and the attendant pollution generated while the concrete can be used for non-structural elements in construction.


Sign in / Sign up

Export Citation Format

Share Document