scholarly journals Evaluating the climate impact of aviation emission scenarios towards the Paris agreement including COVID-19 effects

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Volker Grewe ◽  
Arvind Gangoli Rao ◽  
Tomas Grönstedt ◽  
Carlos Xisto ◽  
Florian Linke ◽  
...  

AbstractAviation is an important contributor to the global economy, satisfying society’s mobility needs. It contributes to climate change through CO2 and non-CO2 effects, including contrail-cirrus and ozone formation. There is currently significant interest in policies, regulations and research aiming to reduce aviation’s climate impact. Here we model the effect of these measures on global warming and perform a bottom-up analysis of potential technical improvements, challenging the assumptions of the targets for the sector with a number of scenarios up to 2100. We show that although the emissions targets for aviation are in line with the overall goals of the Paris Agreement, there is a high likelihood that the climate impact of aviation will not meet these goals. Our assessment includes feasible technological advancements and the availability of sustainable aviation fuels. This conclusion is robust for several COVID-19 recovery scenarios, including changes in travel behaviour.

2021 ◽  
pp. 1-10
Author(s):  
Eelco J. Rohling

This chapter outlines the challenge facing us. The Paris Agreement sets a target maximum of 2°C global warming and a preferred limit of 1.5°C. Yet, the subsequent combined national pledges for emission reduction suffice only for limiting warming to roughly 3°C. And because most nations are falling considerably short of meeting their pledges, even greater warming may become locked in. Something more drastic and wide-ranging is needed: a multi-pronged strategy. These different prongs to the climate-change solution are introduced in this chapter and explored one by one in the following chapters. First is rapid, massive reduction of greenhouse gas emissions. Second is implementation of ways to remove greenhouse gases from the atmosphere. Third may be increasing the reflectivity of Earth to incoming sunlight, to cool certain places down more rapidly. In addition, we need to protect ourselves from climate-change impacts that have already become inevitable.


2019 ◽  
Vol 279 ◽  
pp. 03007
Author(s):  
Ján Hollý ◽  
Adela Palková

The issue of climate change is undeniably demonstrating its presence. Consequently, there is a rising need to be prepared for upcoming threats by any means possible. One of the precautions includes obtaining the information characterizing the expected impact of global warming. This will allow authorities and other stakeholders to act accordingly in time. The article presents the assessment of the extent of impact of energy-related construction solutions in dwelling type unit situated in Central Europe region under the 21st century climate conditions. The findings represent eventual demands of energy for cooling and heating and its prospective savings. This is conducted by consecutively and automatically changing the parameters in individual simulation runs. As a basis for simulations, regionally scaled weather data of three different climate areas are used. These data are based on the emission scenarios by IPCC and are reaching to the year 2100. The selection of assessed parameters and climate data application are briefly explained in the article. The results of simulations are evaluated and recommended solutions are stated in regard to the specific energy-related construction changes. The aim is to successfully mitigate and adapt to the climate change phenomenon.


2019 ◽  
Vol 5 (9) ◽  
pp. eaau2406 ◽  
Author(s):  
Miroslav Trnka ◽  
Song Feng ◽  
Mikhail A. Semenov ◽  
Jørgen E. Olesen ◽  
Kurt Christian Kersebaum ◽  
...  

Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near-simultaneous droughts across key world wheat-producing areas.


Subject The Paris Agreement and US withdrawal. Significance President Donald Trump announced his intention to withdraw from the Paris Agreement on climate change on June 1, prompting criticism from around the world. While current pledges are unlikely to change and the agreement will not see flight or withdrawal by other countries, US withdrawal imperils the ability of the agreement’s structure to accelerate climate action to a scale necessary to meet its objective of limiting global warming to below 2 degrees centigrade by 2100. Impacts The US private sector and sub-national polities will increase their climate action, though the loss of federal support will still be felt. A future US administration could re-enter the agreement, but substantial momentum will be lost diplomatically in the intervening years. Calls for greater adaptation -- rather than mitigation -- funds from climate-vulnerable states will grow more strident.


2019 ◽  
Author(s):  
Tony R Walker

Governments, corporations and individuals all need to take immediate action to help change the global economy toward a circular economy. A circular economy which uses fewer resources and based on renewable clean technologies to help limit global warming to 1.5 °C. The 2018 Intergovernmental Panel on Climate Change (IPCC) report warned that limiting global warming to 1.5 °C above pre-industrial levels would require current greenhouse-gas (GHG) emissions to be cut in half by 2030. Yet actions by governments, corporations and individuals are lagging behind. Many countries are failing their obligations made under the 2015 Paris climate agreement. Even the International Maritime Organization, a United Nations agency set a 50% reduction target of GHG emissions for global shipping by 2050, but this falls short of the IPCC target by 20 years. The United Nations climate summit in New York this week (September 2019) needs to send a strong wake up call to the entire world for us all to change. Change makers like Greta Thunberg has already done that. Individual actions to change consumer behaviour can play a major role to help reduce GHG emissions. Even reducing use of single-use plastics (a petroleum derivative) and incineration can help reduce GHG emissions. GHG emissions from plastics could reach 15% of the global carbon budget by 2050 if not curbed. In Europe, plastic production and incineration emits an estimated ~400 million tonnes of CO2 per year. Therefore, reducing single-use plastic use could curb GHG emissions.


2019 ◽  
Vol 8 (3) ◽  
pp. 56-73 ◽  
Author(s):  
Ragnhild Sollund ◽  
Angela M Maldonado ◽  
Claudia Brieva Rico

The Norwegian government has made an agreement with Juan Manuel Santos, former Colombian president, to give Colombia US$48 million yearly to reduce deforestation. This forms part of a greater effort by Norway to aid countries in the South to halt climate change, through the Norwegian International Climate and Forest Initiative, instituted after the Paris Agreement in 2015. The ways efforts to reduce deforestation have been implemented have been criticised. While Norway, through this investment, appears to be a climate-concerned country, it continues with oil extraction activities. Thus, Norway exhibits double standards and shifts the problem of climate change to the countries in the South. This article examines the successes and failures of the Norwegian rainforest protection efforts in the case of Colombia, assessing the governance of the deforestation policies from the perspective of green Southern criminology and incorporating a critique of the neo-colonialist means of environmental protection established by the North.


Eos ◽  
2017 ◽  
Vol 98 ◽  
Author(s):  
Ben van der Pluijm ◽  
Guy Brasseur

In order to limit global warming to Paris Agreement goal levels, climate engineering should be considered as a viable solution.


Author(s):  
Andrew Hugh MacDougall ◽  
Joeri Rogelj ◽  
Patrick Withey

Abstract Global agriculture is the second largest contributor to anthropogenic climate change after the burning of fossil fuels. However the potential to mitigate the agricultural climate change contribution is limited and needs to account for the imperative to supply food for the global population. Advances in microbial biomass cultivation technology have recently opened a pathway to growing substantial amounts of food for humans or livestock on a small fraction of the land presently used for agriculture. Here we investigate the potential climate change impacts of the end of agriculture as the primary human food production system. We find that replacing agricultural primary production with electrically powered microbial primary production before a low-carbon energy transition has been completed could redirect renewable energy away from replacing fossil fuels, potentially leading to higher total CO2 emissions. If deployed after a transition to renewable energy, the technology could alleviate agriculturally driven climate change. These diverging pathways originate from the reversibility of agricultural driven global warming and the irreversibility of fossil fuel CO2 driven warming. The range of reduced warming from the replacement of agriculture ranges from -0.22 [-0.29 to -0.04] ºC for Shared Socioeconomic Pathway (SSP)1-1.9 to -0.85 [-0.99 to -0.39]ºC for SSP4-6.0. For limited temperature target overshoot scenarios, replacement of agriculture could eliminate or reduce the need for active atmospheric CO2 removal to achieve the necessary peak and decline in global warming.


2021 ◽  
Vol 258 ◽  
pp. 9-11
Author(s):  
Dawn Holland ◽  
Hande Kucuk ◽  
Miguel León-Ledesma

Climate change is one of the most serious risks facing humanity. Temperature rises can lead to catastrophic climate and natural events that threaten livelihoods. From rising sea levels to flooding, bush fires, extreme temperatures and droughts, the economic and human cost is too large to ignore. More than 190 world leaders got together in Glasgow during November 2021 at the UN’s COP26 climate change summit to discuss progress on the Paris Agreement (COP21) and to agree on new measures to limit global warming. In Paris, countries agreed to limit global warming to well below 2° and aim for 1.5° as well as to adapt to the impacts of a changing climate and raise the necessary funding to deliver on these aims. However, actions to date were not nearly enough as highlighted by the IPCC (2018) special report. The world is still on track to reach warming above 3° by 2100. As evident from figure 1, global temperatures have been on a steadily increasing path since the start of the 20th century and this process has substantially accelerated since the beginning of the 1980s. This has been unevenly distributed, with temperatures in the Northern hemisphere being a full 1°C higher than for the 1961–1990 average, whilst temperatures in the Southern hemisphere have increased by almost 0.5°C.


2020 ◽  
pp. 1-45
Author(s):  
Peter Uhe ◽  
Dann Mitchell ◽  
Paul D. Bates ◽  
Myles R. Allen ◽  
Richard A. Betts ◽  
...  

AbstractPrecipitation events cause disruption around the world and will be altered by climate change. However, different climate modeling approaches can result in different future precipitation projections. The corresponding ‘method-uncertainty’ is rarely explicitly calculated in climate impact studies and major reports, but can substantially change estimated precipitation changes. A comparison across five commonly-used modeling activities shows that for changes in mean precipitation, less than half the regions analyzed had significant changes between the present climate and 1.5°C global warming for the majority of modeling activities. This increases to just over half the regions for changes between present climate and 2°C global warming. There is much higher confidence in changes in maximum 1-day precipitation than in mean precipitation, indicating the robust influence of thermodynamics in the climate change effect on extremes. We also find that none of the modeling activities capture the full range of estimates from the other methods in all regions. Our results serve as an uncertainty map to help interpret which regions require a multi-method approach. Our analysis highlights the risk of over-reliance on any single modeling activity and the need for confidence statements in major synthesis reports to reflect this ‘method-uncertainty’. Considering multiple sources of climate projections should reduce the risks of policymakers being unprepared for impacts of warmer climates compared to using single-method projections to make decisions.


Sign in / Sign up

Export Citation Format

Share Document