scholarly journals Grain-boundary-rich polycrystalline monolayer WS2 film for attomolar-level Hg2+ sensors

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lixuan Liu ◽  
Kun Ye ◽  
Changqing Lin ◽  
Zhiyan Jia ◽  
Tianyu Xue ◽  
...  

AbstractEmerging two-dimensional (2D) layered materials have been attracting great attention as sensing materials for next-generation high-performance biological and chemical sensors. The sensor performance of 2D materials is strongly dependent on the structural defects as indispensable active sites for analyte adsorption. However, controllable defect engineering in 2D materials is still challenging. In the present work, we propose exploitation of controllably grown polycrystalline films of 2D layered materials with high-density grain boundaries (GBs) for design of ultra-sensitive ion sensors, where abundant structural defects on GBs act as favorable active sites for ion adsorption. As a proof-of-concept, our fabricated surface plasmon resonance sensors with GB-rich polycrystalline monolayer WS2 films have exhibited high selectivity and superior attomolar-level sensitivity in Hg2+ detection owing to high-density GBs. This work provides a promising avenue for design of ultra-sensitive sensors based on GB-rich 2D layered materials.

2020 ◽  
Author(s):  
Tianyu Xue ◽  
Lixuan Liu ◽  
Kun Ye ◽  
Changqing Lin ◽  
Zhiyan Jia ◽  
...  

Abstract Next-generation high-performance biological and chemical sensors based on the emerging multitudinous two-dimensional (2D) layered materials have been attracting great attention in recent years. The performance of 2D biochemical sensors is strongly dependent on the structural defects, which provide indispensable active sites for sensitive and selective adsorption of analytes. However, achieving controllable defect engineering is still a big challenge. In the present work, we propose achieving superior biochemical sensor performance with high-surface-density grain boundaries (GBs), a kind of ubiquitous structural defects, in polycrystalline 2D thin films, which can be controllably synthesized. As a proof-of-concept, by utilizing the high-density GBs in monolayer (1L) WS2 films, we fabricated a series of surface plasmon resonance (SPR) sensors for mercury ion (Hg2+) detection. Our investigation has demonstrated substantial sensitivity enhancement of Hg2+ detection down to trace attomolar-level quantification (detection limit of 1 aM), which is ascribed to the abundance of active sites on high-density GBs. This work provides a promising avenue for the design of ultra-sensitive sensors toward commercialized products based on the GB-rich 2D layered materials.


2016 ◽  
Vol 9 (12) ◽  
pp. 3736-3745 ◽  
Author(s):  
Haihua Wu ◽  
Haobo Li ◽  
Xinfei Zhao ◽  
Qingfei Liu ◽  
Jing Wang ◽  
...  

High-density coordination unsaturated copper(i)–nitrogen embedded in graphene demonstrates a high performance and stability in primary zinc–air batteries with ultralow catalyst loading.


Research ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Jiang ◽  
Tao Xu ◽  
Junpeng Lu ◽  
Litao Sun ◽  
Zhenhua Ni

Two-dimensional (2D) materials have attracted increasing interests in the last decade. The ultrathin feature of 2D materials makes them promising building blocks for next-generation electronic and optoelectronic devices. With reducing dimensionality from 3D to 2D, the inevitable defects will play more important roles in determining the properties of materials. In order to maximize the functionality of 2D materials, deep understanding and precise manipulation of the defects are indispensable. In the recent years, increasing research efforts have been made on the observation, understanding, manipulation, and control of defects in 2D materials. Here, we summarize the recent research progress of defect engineering on 2D materials. The defect engineering triggered by electron beam (e-beam), plasma, chemical treatment, and so forth is comprehensively reviewed. Firstly, e-beam irradiation-induced defect evolution, structural transformation, and novel structure fabrication are introduced. With the assistance of a high-resolution electron microscope, the dynamics of defect engineering can be visualized in situ. Subsequently, defect engineering employed to improve the performance of 2D devices by means of other methods of plasma, chemical, and ozone treatments is reviewed. At last, the challenges and opportunities of defect engineering on promoting the development of 2D materials are discussed. Through this review, we aim to build a correlation between defects and properties of 2D materials to support the design and optimization of high-performance electronic and optoelectronic devices.


2022 ◽  
Author(s):  
Manareldeen Ahmed ◽  
Yan Li ◽  
Wenchao Chen ◽  
Erping Li

Abstract This paper investigates the diffusion barrier performance of 2D layered materials with pre-existing vacancy defects using first-principles density functional theory. Vacancy defects in 2D materials may give rise to a large amount of Cu accumulation, and consequently, the defect becomes a diffusion path for Cu. Five 2D layered structures are investigated as diffusion barriers for Cu, i.e., graphene with C vacancy, hBN with B/N vacancy, and MoS2 with Mo/2S vacancy. The calculated energy barriers using climbing image - nudged elastic band show that MoS2-V2S has the highest diffusion energy barrier among other 2D layers, followed by hBN-VN and graphene. The obtained energy barrier of Cu on defected layer is found to be proportional to the length of the diffusion path. Moreover, the diffusion of Cu through vacancy defects is found to modulate the electronic structures and magnetic properties of the 2D layer. The charge density difference shows that there exists a considerable charge transfer between Cu and barrier layer as quantified by Bader charge. Given the current need for an ultra-thin diffusion barrier layer, the obtained results contribute to the field of application of 2D materials as Cu diffusion barrier in the presence of mono-vacancy defects.


2020 ◽  
Vol 5 (2) ◽  
pp. 331-335 ◽  
Author(s):  
Viviana Jehová González ◽  
Antonio M. Rodríguez ◽  
Ismael Payo ◽  
Ester Vázquez

Different 2D-layered materials of transition metal dichalcogenides (TMDCs) such as boron nitride (BN) or molybdenum disulphide (MoS2) have been theorised to have piezoelectric behaviour.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3198
Author(s):  
Syed Fakhar Alam ◽  
Min-Zy Kim ◽  
Aafaq ur Rehman ◽  
Devipriyanka Arepalli ◽  
Pankaj Sharma ◽  
...  

Two-dimensional SAPO-34 molecular sieves were synthesized by microwave hydrothermal process. The concentrations of structure directing agent (SDA), phosphoric acid, and silicon in the gel solution were varied and their effect on phase, shape, and composition of synthesized particles was studied. The synthesized particles were characterized by various techniques using SEM, XRD, BET, EDX, and NH3-TPD. Various morphologies of particles including isotropic, hyper rectangle, and nanoplates were obtained. It was found that the Si/Al ratio of the SAPO-34 particles was in a direct relationship with the density of acid sites. Moreover, the gel composition and preparation affected the chemistry of the synthesized particles. The slow addition of phosphoric acid improved the homogeneity of synthesis gel and resulted in SAPO-34 nanoplates with high density of acid sites, 3.482 mmol/g. The SAPO-34 nanoplates are expected to serve as a high performance catalyst due to the low mass transfer resistance and the high density of active sites.


2019 ◽  
Vol 1 (7) ◽  
pp. 2606-2611 ◽  
Author(s):  
Xuan-Ze Li ◽  
Yi-Fan Wang ◽  
Jing Xia ◽  
Xiang-Min Meng

Vertical heterostructures based on two-dimensional (2D) layered materials are ideal platforms for electronic structure engineering and novel device applications.


Author(s):  
Abhinandan Patra ◽  
Mahendra A More ◽  
Dattatray J Late ◽  
Chandra Sekhar Rout

2D layered materials are widely regarded as the revolutionary class of materials and hold great promises in the modern device technology industries. 2D materials family covers almost the entire spectrum...


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1192
Author(s):  
Zixin Xiong ◽  
Lei Zhong ◽  
Haotian Wang ◽  
Xiaoyan Li

Since the success of monolayer graphene exfoliation, two-dimensional (2D) materials have been extensively studied due to their unique structures and unprecedented properties. Among these fascinating studies, the most predominant focus has been on their atomic structures, defects, and mechanical behaviors and properties, which serve as the basis for the practical applications of 2D materials. In this review, we first highlight the atomic structures of various 2D materials and the structural and energy features of some common defects. We then summarize the recent advances made in experimental, computational, and theoretical studies on the mechanical properties and behaviors of 2D materials. We mainly emphasized the underlying deformation and fracture mechanisms and the influences of various defects on mechanical behaviors and properties, which boost the emergence and development of topological design and defect engineering. We also further introduce the piezoelectric and flexoelectric behaviors of specific 2D materials to address the coupling between mechanical and electronic properties in 2D materials and the interactions between 2D crystals and substrates or between different 2D monolayers in heterostructures. Finally, we provide a perspective and outlook for future studies on the mechanical behaviors and properties of 2D materials.


2020 ◽  
Author(s):  
David Moss

As a new group of advanced 2D layered materials, bismuth oxyhalides, i.e., BiOX (X = Cl, Br, I), have recently become of great interest. In this work, we characterize the third-order optical nonlinearities of BiOBr, an important member of the BiOX family.


Sign in / Sign up

Export Citation Format

Share Document