scholarly journals Spin/valley pumping of resident electrons in WSe2 and WS2 monolayers

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Cedric Robert ◽  
Sangjun Park ◽  
Fabian Cadiz ◽  
Laurent Lombez ◽  
Lei Ren ◽  
...  

AbstractMonolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.

2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Pranab Kumar Das ◽  
D. Di Sante ◽  
I. Vobornik ◽  
J. Fujii ◽  
T. Okuda ◽  
...  

Abstract The behaviour of electrons and holes in a crystal lattice is a fundamental quantum phenomenon, accounting for a rich variety of material properties. Boosted by the remarkable electronic and physical properties of two-dimensional materials such as graphene and topological insulators, transition metal dichalcogenides have recently received renewed attention. In this context, the anomalous bulk properties of semimetallic WTe2 have attracted considerable interest. Here we report angle- and spin-resolved photoemission spectroscopy of WTe2 single crystals, through which we disentangle the role of W and Te atoms in the formation of the band structure and identify the interplay of charge, spin and orbital degrees of freedom. Supported by first-principles calculations and high-resolution surface topography, we reveal the existence of a layer-dependent behaviour. The balance of electron and hole states is found only when considering at least three Te–W–Te layers, showing that the behaviour of WTe2 is not strictly two dimensional.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liheng Zheng ◽  
Zhixin Liu ◽  
Donglin Liu ◽  
Xingguo Wang ◽  
Yu Li ◽  
...  

AbstractValley pseudospin in transition metal dichalcogenides monolayers intrinsically provides additional possibility to control valley carriers, raising a great impact on valleytronics in following years. The spin-valley locking directly contributes to optical selection rules which allow for valley-dependent addressability of excitons by helical optical pumping. As a binary photonic addressable route, manipulation of valley polarization states is indispensable while effective control methods at deep-subwavelength scale are still limited. Here, we report the excitation and control of valley polarization in h-BN/WSe2/h-BN and Au nanoantenna hybrid structure by electron beam. Near-field circularly polarized dipole modes can be excited via precise stimulation and generate the valley polarized cathodoluminescence via near-field interaction. Effective manipulation of valley polarization degree can be realized by variation of excitation position. This report provides a near-field excitation methodology of valley polarization, which offers exciting opportunities for deep-subwavelength valleytronics investigation, optoelectronic circuits integration and future quantum information technologies.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Wei-Ting Hsu ◽  
Yen-Lun Chen ◽  
Chang-Hsiao Chen ◽  
Pang-Shiuan Liu ◽  
Tuo-Hung Hou ◽  
...  

Abstract A robust valley polarization is a key prerequisite for exploiting valley pseudospin to carry information in next-generation electronics and optoelectronics. Although monolayer transition metal dichalcogenides with inherent spin–valley coupling offer a unique platform to develop such valleytronic devices, the anticipated long-lived valley pseudospin has not been observed yet. Here we demonstrate that robust valley-polarized holes in monolayer WSe2 can be initialized by optical pumping. Using time-resolved Kerr rotation spectroscopy, we observe a long-lived valley polarization for positive trion with a lifetime approaching 1 ns at low temperatures, which is much longer than the trion recombination lifetime (∼10–20 ps). The long-lived valley polarization arises from the transfer of valley pseudospin from photocarriers to resident holes in a specific valley. The optically initialized valley pseudospin of holes remains robust even at room temperature, which opens up the possibility to realize room-temperature valleytronics based on transition metal dichalcogenides.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
L. Sortino ◽  
P. G. Zotev ◽  
S. Mignuzzi ◽  
J. Cambiasso ◽  
D. Schmidt ◽  
...  

Abstract Unique structural and optical properties of atomically thin two-dimensional semiconducting transition metal dichalcogenides enable in principle their efficient coupling to photonic cavities having the optical mode volume close to or below the diffraction limit. Recently, it has become possible to make all-dielectric nano-cavities with reduced mode volumes and negligible non-radiative losses. Here, we realise low-loss high-refractive-index dielectric gallium phosphide (GaP) nano-antennas with small mode volumes coupled to atomic mono- and bilayers of WSe$${}_{2}$$ 2 . We observe a photoluminescence enhancement exceeding 10$${}^{4}$$ 4 compared with WSe$${}_{2}$$ 2 placed on planar GaP, and trace its origin to a combination of enhancement of the spontaneous emission rate, favourable modification of the photoluminescence directionality and enhanced optical excitation efficiency. A further effect of the coupling is observed in the photoluminescence polarisation dependence and in the Raman scattering signal enhancement exceeding 10$${}^{3}$$ 3 . Our findings reveal dielectric nano-antennas as a promising platform for engineering light-matter coupling in two-dimensional semiconductors.


Nanoscale ◽  
2017 ◽  
Vol 9 (44) ◽  
pp. 17422-17428 ◽  
Author(s):  
A. T. Hanbicki ◽  
M. Currie ◽  
G. Kioseoglou ◽  
C. Stephen Hellberg ◽  
A. L. Friedman ◽  
...  

The optical response of single layer, transition metal dichalcogenides is extremely dependent on the choice of optical excitation.


Nanophotonics ◽  
2017 ◽  
Vol 6 (6) ◽  
pp. 1289-1308 ◽  
Author(s):  
Maciej Koperski ◽  
Maciej R. Molas ◽  
Ashish Arora ◽  
Karol Nogajewski ◽  
Artur O. Slobodeniuk ◽  
...  

AbstractRecent results on the optical properties of monolayer and few layers of semiconducting transition metal dichalcogenides are reviewed. Experimental observations are presented and discussed in the frame of existing models, highlighting the limits of our understanding in this emerging field of research. We first introduce the representative band structure of these systems and their interband optical transitions. The effect of an external magnetic field is then considered to discuss Zeeman spectroscopy and optical pumping experiments, both revealing phenomena related to the valley degree of freedom. Finally, we discuss the observation of single photon emitters in different types of layered materials, including wide band gap hexagonal boron nitride. While going through these topics, we try to focus on open questions and on experimental observations, which do not yet have a clear explanation.


2021 ◽  
Author(s):  
Kaihui Liu ◽  
Yonggang Zuo ◽  
Can Liu ◽  
Liping Ding ◽  
Ruixi Qiao ◽  
...  

Abstract Two-dimensional (2D) transition metal dichalcogenides (TMDs), with their atomic thicknesses, high carrier mobility, fast charge transfer, and intrinsic spin-valley couplings, have been demonstrated one of the most appealing candidates for next-generation electronic and optoelectronic devices. The synthesis of TMDs with well-controlled crystallinity, quality and composition is essential to fully realize their promising applications. Similar to that in III-V semiconductor synthesis, the precise precursor supply is a precondition for controllable growth of TMDs. Although great efforts have been devoted to modulate the transition metal supply, few effective methods of chalcogen feeding control were developed. Herein we report a strategy of using active chalcogen monomer supply to grow TMDs and their alloys in a robust and controllable manner. It is found that at a high temperature, the active chalcogen monomers (such as S, Se, Te atoms or their mixtures) can be controllably released from metal chalcogenides and, thus, enable the synthesis of TMDs (MX2, M = Mo, W; X = S, Se, Te) with very high quality, e.g., MoS2 monolayers exhibit photoluminescent circular helicity of ~92%, comparable to the best exfoliated single-crystal flakes and close to the theoretical limit of unity. More intriguingly, a uniform quaternary TMD alloy with three different anions, i.e., MoS2(1-x-y)Se2xTe2y, was accomplished for the first time. Our mechanism study revealed that the active chalcogen monomers can bind and diffuse freely on a TMD surface, which enables the effective nucleation and reaction, quick chalcogen vacancy healing, and alloy formation during the growth. The chalcogen monomer supply strategy offers more degrees of freedom for the controllable synthesis of 2D compounds and their alloys, which will greatly benefit the development of high-end devices with desired 2D materials.


2016 ◽  
Vol 113 (14) ◽  
pp. 3746-3750 ◽  
Author(s):  
Lu Xie ◽  
Xiaodong Cui

Manipulating spin polarization of electrons in nonmagnetic semiconductors by means of electric fields or optical fields is an essential theme of the conceptual nonmagnetic semiconductor-based spintronics. Here we experimentally demonstrate an electric method of detecting spin polarization in monolayer transition metal dichalcogenides (TMDs) generated by circularly polarized optical pumping. The spin-polarized photocurrent is achieved through the valley-dependent optical selection rules and the spin–valley locking in monolayer WS2, and electrically detected by a lateral spin–valve structure with ferromagnetic contacts. The demonstrated long spin–valley lifetime, the unique valley-contrasted physics, and the spin–valley locking make monolayer WS2 an unprecedented candidate for semiconductor-based spintronics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ioannis Paradisanos ◽  
Gang Wang ◽  
Evgeny M. Alexeev ◽  
Alisson R. Cadore ◽  
Xavier Marie ◽  
...  

AbstractEnergy relaxation of photo-excited charge carriers is of significant fundamental interest and crucial for the performance of monolayer transition metal dichalcogenides in optoelectronics. The primary stages of carrier relaxation affect a plethora of subsequent physical mechanisms. Here we measure light scattering and emission in tungsten diselenide monolayers close to the laser excitation energy (down to ~0.6 meV). We reveal a series of periodic maxima in the hot photoluminescence intensity, stemming from energy states higher than the A-exciton state. We find a period ~15 meV for 7 peaks below (Stokes) and 5 peaks above (anti-Stokes) the laser excitation energy, with a strong temperature dependence. These are assigned to phonon cascades, whereby carriers undergo phonon-induced transitions between real states above the free-carrier gap with a probability of radiative recombination at each step. We infer that intermediate states in the conduction band at the Λ-valley of the Brillouin zone participate in the cascade process of tungsten diselenide monolayers. This provides a fundamental understanding of the first stages of carrier–phonon interaction, useful for optoelectronic applications of layered semiconductors.


Sign in / Sign up

Export Citation Format

Share Document