scholarly journals Iminodibenzyl induced redirected COX-2 activity inhibits breast cancer progression

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Harshit Shah ◽  
Lizhi Pang ◽  
Steven Qian ◽  
Venkatachalem Sathish

AbstractKnocking down delta-5-desaturase (D5D) by siRNA or shRNA is a promising strategy to achieve 8-hydroxyoctanoic acid (8-HOA) production for cancer inhibition. However, the RNAi-based strategy to stimulate 8-HOA is restricted due to endonucleases mediated physiological degradation and off-target effects. Thus, to get persistent 8-HOA in the cancer cell, we recognized a D5D inhibitor Iminodibenzyl. Here, we have postulated that Iminodibenzyl, by inhibiting D5D activity, could shift the di-homo-gamma-linolenic acid (DGLA) peroxidation from arachidonic acid to 8-HOA in high COX-2 microenvironment of 4T1 and MDA-MB-231 breast cancer cells. We observed that Iminodibenzyl stimulated 8-HOA caused HDAC activity reduction resulting in intrinsic apoptosis pathway activation. Additionally, reduced filopodia and lamellipodia, and epithelial-mesenchymal transition markers give rise to decreased cancer cell migration. In the orthotopic breast cancer model, the combination of Iminodibenzyl and DGLA reduced tumor size. From in vitro and in vivo studies, we concluded that Iminodibenzyl could reprogram COX-2 induced DGLA peroxidation to produce anti-cancer activity.

2020 ◽  
Vol 11 (7) ◽  
Author(s):  
Yifan Wang ◽  
Ruocen Liao ◽  
Xingyu Chen ◽  
Xuhua Ying ◽  
Guanping Chen ◽  
...  

Abstract Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Jun Wang ◽  
Zhigang He ◽  
Bo Sun ◽  
Wenhai Huang ◽  
Jianbin Xiang ◽  
...  

Pleckstrin-2 (PLEK2) is a crucial mediator of cytoskeletal reorganization. However, the potential roles of PLEK2 in gastric cancer are still unknown. PLEK2 expression in gastric cancer was examined by western blotting and real-time PCR. Survival analysis was utilized to test the clinical impacts of the levels of PLEK2 in gastric cancer patients. In vitro and in vivo studies were used to estimate the potential roles played by PLEK2 in modulating gastric cancer proliferation, self-renewal, and tumourigenicity. Bioinformatics approaches were used to monitor the effect of PLEK2 on epithelial-mesenchymal transition (EMT) signalling pathways. PLEK2 expression was significantly upregulated in gastric cancer as compared with nontumour samples. Kaplan-Meier plotter analysis revealed that gastric cancer patients with higher PLEK2 levels had substantially poorer overall survival compared with gastric cancer patients with lower PLEK2 levels. The upregulation or downregulation of PLEK2 in gastric cancer cell lines effectively enhanced or inhibited cell proliferation and proinvasive behaviour, respectively. Additionally, we also found that PLEK2 enhanced EMT through downregulating E-cadherin expression and upregulating Vimentin expression. Our findings demonstrated that PLEK2 plays a potential role in gastric cancer and may be a novel therapeutic target for gastric cancer.


2021 ◽  
Author(s):  
Li Qin ◽  
Jianwei Chen ◽  
Dong Lu ◽  
Prashi Jain ◽  
Yang Yu ◽  
...  

Steroid receptor coactivators (SRCs) possess specific and distinct oncogenic roles in the initiation of cancer and in cancer progression to a more aggressive disease. These coactivators interact with nuclear receptors and other transcription factors to boost transcription of multiple genes which potentiate cancer cell proliferation, migration, invasion, tumor angiogenesis and epithelial mesenchymal transition (EMT). Targeting SRCs using small molecule inhibitors (SMIs) is a promising approach to control cancer progression and metastasis. By high throughput screening analysis, we recently identified SI-2 as a potent SRC SMI. To develop therapeutic agents, SI-10 and SI-12, the SI-2 analogs, are synthesized that incorporate the addition of fluorine atoms to the SI-2 chemical structure. As a result, these analogs exhibit a significantly prolonged plasma half-life, minimal toxicity and improved hERG activity. Biological functional analysis showed that SI-10 and SI-12 treatment (5-50 nM) can significantly inhibit viability, migration and invasion of breast cancer cells in vitro and repress the growth of breast cancer PDX organoids. Treatment of mice with 10 mg/kg/day of either SI-10 or SI-12 was sufficient to repress growth of xenograft tumors derived from MDA-MB-231 and LM2 cells. Furthermore, in spontaneous and experimental metastasis mouse models developed from MDA-MB-231 and LM2 cells respectively, SI-10 and SI-12 effectively inhibited progression of breast cancer lung metastasis. These results demonstrate that SI-10/SI-12 are promising therapeutic agents and are specifically effective in blocking tumor metastasis, a key point in tumor progression to a more lethal state that results in patient mortality in the majority of cases.


2019 ◽  
Vol 166 (6) ◽  
pp. 485-493 ◽  
Author(s):  
Anyun Mao ◽  
Maojian Chen ◽  
Qinghong Qin ◽  
Zhijie Liang ◽  
Wei Jiang ◽  
...  

Abstract It has been generally confirmed that zinc finger and BTB domain containing 7A (ZBTB7A) plays an important role in the occurrence and progression of malignant tumours, but the promotion or inhibition effect is related to tumour type. The mechanism between ZBTB7A and breast cancer is not well understood, so further research is needed. In this study, we first investigated the expression of ZBTB7A in tissue samples of clinical breast cancer patients, MDA-MB-231, MCF-7 and MCF-10A cells. Second, we overexpressed the ZBTB7A in MCF-7 cells and silenced the ZBTB7A in MDA-MB-231 cells using lentivirus transfection technology, respectively, and verified the effect of ZBTB7A on migration and invasion of breast cancer cell lines through in vitro cell function experiments, such as wound-healing assay, migration and invasion assay, quantitative real time reverse transcriptase (qRT-PCR) and western blot. Then, the correlation between the above influences, epithelial–mesenchymal transition (EMT) and NF-κB was analysed. Finally, in vivo tumour transplantation model in nude mice was established to verified the effect of ZBTB7A on metastasis of breast cancer MDA-MB-231 cells. In conclusion, ZBTB7A is highly expressed in cancer tissue, breast cancer cell line MDA-MB-231 and MCF-7. Meanwhile, the high expression of ZBTB7A may promote cell migration, invasion and tumour metastasis, which may be related to EMT events by regulating NF-κB.


2017 ◽  
Vol 41 (3) ◽  
pp. 1135-1146 ◽  
Author(s):  
Yang Du ◽  
Xiu-heng Liu ◽  
Heng-cheng Zhu ◽  
Lei Wang ◽  
Jin-zhuo Ning ◽  
...  

Background/Aims: MicroRNAs (miRNAs, miRs) have emerged as important post-transcriptional regulators in various cancers. miR-543 has been reported to play critical roles in hepatocellular carcinoma and colorectal cancer, however, the role of miR-543 in the pathogenesis of prostate cancer has not been fully understood. Methods: Expression of miR-543 and Raf Kinase Inhibitory Protein (RKIP) in clinical prostate cancer specimens, two prostate cancer cell lines, namely LNCAP and C4-2B, were determined. The effects of miR-543 on proliferation and metastasis of tumor cells were also investigated with both in vitro and in vivo studies. Results: miR-543 was found to be negatively correlated with RKIP expression in clinical tumor samples and was significantly upregulated in metastatic prostate cancer cell line C4-2B compared with parental LNCAP cells. Further studies identified RKIP as a direct target of miR-543. Overexpression of miR-543 downregulated RKIP expression and promoted the proliferation and metastasis of cancer cells, whereas knockdown of miR-543 increased expression of RKIP and suppressed the proliferation and metastasis of cancer cells in vitro and in vivo. Conclusion: Our study demonstrates that miR-543 promotes the proliferation and metastasis of prostate cancer via targeting RKIP.


2019 ◽  
Vol 41 (5) ◽  
pp. 551-560 ◽  
Author(s):  
Ming Chen ◽  
Shitao Zou ◽  
Chao He ◽  
Jundong Zhou ◽  
Suoyuan Li ◽  
...  

Abstract The bone marrow has been long known to host a unique environment amenable to colonization by metastasizing tumor cells. Yet, the underlying molecular interactions which give rise to the high incidence of bone metastasis (BM) in breast cancer patients have long remained uncharacterized. In our study, in vitro and in vivo assays demonstrated that Brachyury (Bry) could promote breast cancer BM. Bry drives epithelial–mesenchymal transition (EMT) and promotes breast cancer aggressiveness. As an EMT driver, SOX5 involves in breast cancer metastasis and the specific function in BM. Chromatin immunoprecipitation (ChIP) assays revealed SOX5 is a direct downstream target gene of Bry. ChIP analysis and reporter assays identified two Bry-binding motifs; one consistent with the classic conserved binding sequence and the other a new motif sequence. This study demonstrates for the first time that Bry promotes breast cancer cells BM through activating SOX5. In clinical practice, targeting the Bry-Sox5-EMT pathway is evolving into a promising avenue for the prevention of bone metastatic relapse, therapeutic resistance and other aspects of breast cancer progression. Brachyury directly regulates the expression of SOX5 by binding to two motifs in its promoter region. The Bry-SOX5-EMT pathway may represent a potential target to develop treatments to prevent and treat bone metastasis from breast cancer.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Wang ◽  
Zhiwei He ◽  
Jian Xu ◽  
Peng Chen ◽  
Jianxin Jiang

AbstractAn accumulation of evidence indicates that long noncoding RNAs are involved in the tumorigenesis and progression of pancreatic cancer (PC). In this study, we investigated the functions and molecular mechanism of action of LINC00941 in PC. Quantitative PCR was used to examine the expression of LINC00941 and miR-335-5p in PC tissues and cell lines, and to investigate the correlation between LINC00941 expression and clinicopathological features. Plasmid vectors or lentiviruses were used to manipulate the expression of LINC00941, miR-335-5p, and ROCK1 in PC cell lines. Gain or loss-of-function assays and mechanistic assays were employed to verify the roles of LINC00941, miR-335-5p, and ROCK1 in PC cell growth and metastasis, both in vivo and in vitro. LINC00941 and ROCK1 were found to be highly expressed in PC, while miR-335-5p exhibited low expression. High LINC00941 expression was strongly associated with larger tumor size, lymph node metastasis, and poor prognosis. Functional experiments revealed that LINC00941 silencing significantly suppressed PC cell growth, metastasis and epithelial–mesenchymal transition. LINC00941 functioned as a molecular sponge for miR-335-5p, and a competitive endogenous RNA (ceRNA) for ROCK1, promoting ROCK1 upregulation, and LIMK1/Cofilin-1 pathway activation. Our observations lead us to conclude that LINC00941 functions as an oncogene in PC progression, behaving as a ceRNA for miR-335-5p binding. LINC00941 may therefore have potential utility as a diagnostic and treatment target in this disease.


2020 ◽  
Vol 22 (1) ◽  
pp. 89
Author(s):  
Ha Thi Thu Do ◽  
Jungsook Cho

Chemokine–receptor interactions play multiple roles in cancer progression. It was reported that the overexpression of X-C motif chemokine receptor 1 (XCR1), a specific receptor for chemokine X-C motif chemokine ligand 1 (XCL1), stimulates the migration of MDA-MB-231 triple-negative breast cancer cells. However, the exact mechanisms of this process remain to be elucidated. Our study found that XCL1 treatment markedly enhanced MDA-MB-231 cell migration. Additionally, XCL1 treatment enhanced epithelial–mesenchymal transition (EMT) of MDA-MB-231 cells via E-cadherin downregulation and upregulation of N-cadherin and vimentin as well as increases in β-catenin nucleus translocation. Furthermore, XCL1 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. Notably, the effects of XCL1 on cell migration and intracellular signaling were negated by knockdown of XCR1 using siRNA, confirming XCR1-mediated actions. Treating MDA-MB-231 cells with U0126, a specific mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, blocked XCL1-induced HIF-1α accumulation and cell migration. The effect of XCL1 on cell migration was also evaluated in ER-/HER2+ SK-BR-3 cells. XCL1 also promoted cell migration, EMT induction, HIF-1α accumulation, and ERK phosphorylation in SK-BR-3 cells. While XCL1 did not exhibit any significant impact on the matrix metalloproteinase (MMP)-2 and -9 expressions in MDA-MB-231 cells, it increased the expression of these enzymes in SK-BR-3 cells. Collectively, our results demonstrate that activation of the ERK/HIF-1α/EMT pathway is involved in the XCL1-induced migration of both MDA-MB-231 and SK-BR-3 breast cancer cells. Based on our findings, the XCL1–XCR1 interaction and its associated signaling molecules may serve as specific targets for the prevention of breast cancer cell migration and metastasis.


2019 ◽  
Vol 5 (4) ◽  
pp. 53 ◽  
Author(s):  
Xiao ◽  
Humphries ◽  
Yang ◽  
Wang

MicroRNAs (miRNAs) are endogenous non-coding small RNAs that downregulate target gene expression by imperfect base-pairing with the 3′ untranslated regions (3′UTRs) of target gene mRNAs. MiRNAs play important roles in regulating cancer cell proliferation, stemness maintenance, tumorigenesis, cancer metastasis, and cancer therapeutic resistance. While studies have shown that dysregulation of miRNA-205-5p (miR-205) expression is controversial in different types of human cancers, it is generally observed that miR-205-5p expression level is downregulated in breast cancer and that miR-205-5p exhibits a tumor suppressive function in breast cancer. This review focuses on the role of miR-205-5p dysregulation in different subtypes of breast cancer, with discussions on the effects of miR-205-5p on breast cancer cell proliferation, epithelial–mesenchymal transition (EMT), metastasis, stemness and therapy-resistance, as well as genetic and epigenetic mechanisms that regulate miR-205-5p expression in breast cancer. In addition, the potential diagnostic and therapeutic value of miR-205-5p in breast cancer is also discussed. A comprehensive list of validated miR-205-5p direct targets is presented. It is concluded that miR-205-5p is an important tumor suppressive miRNA capable of inhibiting the growth and metastasis of human breast cancer, especially triple negative breast cancer. MiR-205-5p might be both a potential diagnostic biomarker and a therapeutic target for metastatic breast cancer.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4414
Author(s):  
Fabiana Sélos Guerra ◽  
Flaviana Rodrigues Fintelman Dias ◽  
Anna Claudia Cunha ◽  
Patricia Dias Fernandes

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with poor clinical outcome, and currently no effective targeted therapies are available. Indole compounds have been shown to have potential antitumor activity against various cancer cells. In the present study, we found that new four benzo[f]indole-4,9-dione derivatives reduce TNBC cell viability by reactive oxygen species (ROS) accumulation stress in vitro. Further analyses showed that LACBio1, LACBio2, LACBio3 and LACBio4 exert cytotoxic effects on MDA-MB 231 cancer cell line by inducing the intrinsic apoptosis pathway, activating caspase 9 and Bax/Bcl-2 pathway in vitro. These results provide evidence that these new four benzo[f]indole-4,9-dione derivatives could be potential therapeutic agents against TNBC by promoting ROS stress-mediated apoptosis through intrinsic-pathway caspase activation.


Sign in / Sign up

Export Citation Format

Share Document