Stromal support from IL-17

2019 ◽  
Vol 19 (5) ◽  
pp. 270-271
Author(s):  
Yvonne Bordon
Keyword(s):  
Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Dagmar Dilloo ◽  
Donna Rill ◽  
Claire Entwistle ◽  
Michael Boursnell ◽  
Wanyun Zhong ◽  
...  

Herpes simplex viruses (HSVs) would offer numerous advantages as vectors for gene transfer, but as yet they have not proved capable of transducing hematopoietic cells. Using a genetically inactivated form of HSV that is restricted to a single cycle of replication (disabled single-cycle virus, [DISC-HSV]), we have transduced normal human hematopoietic progenitor cells and primary leukemia blasts with efficiencies ranging from 80% to 100%, in the absence of growth factors or stromal support. Toxicity was low, with 70% to 100% of cells surviving the transduction process. Peak expression of transferred genes occurred at 24 to 48 hours after transduction with the DISC-HSV vector, declining to near background levels by 14 days. Despite this limitation, sufficient protein is produced by the inserted gene to permit consideration of the vector for applications in which transient expression is adequate. One example is the transfer of immunostimulatory genes, to generate leukemia immunogens. Thus, murine A20 leukemia cells transduced with a DISC-HSV vector encoding granulocyte-macrophage colony-stimulating factor were able to stimulate a potent antitumor response in mice, even against pre-existing leukemia. The exceptional transducing ability of the DISC-HSV vector should therefore facilitate genetic manipulation of normal and malignant human hematopoietic cells for biological and clinical investigation.


2003 ◽  
pp. 143-154 ◽  
Author(s):  
Pierre Charbord
Keyword(s):  

Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1377
Author(s):  
Yasser Perera ◽  
Alice Melão ◽  
Ailyn C. Ramón ◽  
Dania Vázquez ◽  
Daniel Ribeiro ◽  
...  

Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.


Blood ◽  
1998 ◽  
Vol 92 (4) ◽  
pp. 1131-1141 ◽  
Author(s):  
J.F. Tisdale ◽  
Y. Hanazono ◽  
S.E. Sellers ◽  
B.A. Agricola ◽  
M.E. Metzger ◽  
...  

Abstract The possibility of primitive hematopoietic cell ex vivo expansion is of interest for both gene therapy and transplantation applications. The engraftment of autologous rhesus peripheral blood (PB) progenitors expanded 10 to 14 days were tracked in vivo using genetic marking. Stem cell factor (SCF)/granulocyte colony-stimulating factor (G-CSF)–mobilized and CD34-enriched PB cells were divided into two equal aliquots and transduced with one of two retroviral vectors carrying the neomycin-resistance gene (neo) for 4 days in the presence of interleukin-3 (IL-3), IL-6, and SCF in the first 5 animals, IL-3/IL-6/SCF/Flt-3 ligand (FLT) in 2 subsequent animals, or IL-3/IL-6/SCF/FLT plus an autologous stromal monolayer (STR) in the final 2. At the end of transduction period, one aliquot (nonexpanded) from each animal was frozen, whereas the other was expanded under the same conditions but without vector for a total of 14 days before freezing. After total body irradiation, both the nonexpanded and expanded transduced cells were reinfused. Despite 5- to 13-fold higher cell and colony-forming unit (CFU) doses from the expanded fraction of marked cells, there was greater short- and long-term marking from the nonexpanded cells in all animals. In animals receiving cells transduced and expanded in the presence of IL-3/IL-6/SCF/FLT, engraftment by the marked expanded cells was further diminished. This discrepancy was even more pronounced in the animals who received cells transduced and expanded in the presence of FLT and autologous stroma, with no marking detectable from the expanded cells. Despite lack of evidence for expansion of engrafting cells, we found that the addition of FLT and especially STR during the initial brief transduction period increased engraftment with marked cells into a clinically relevant range. Levels of marked progeny cells originating from the nonexpanded aliqouts were significantly higher than that seen in previous 4 animals receiving cells transduced in the presence of IL-3/IL-6/SCF, with levels of 10% to 20% confirmed by Southern blotting from the nonexpanded IL-3/IL-6/SCF/FLT/STR graft compared with 0.01% in the original IL-3/IL-6/SCF cohort. These results suggest that, although expansion of PB progenitors is feasible ex vivo, their contribution towards both short- and long-term engraftment is markedly impaired. However, a brief transduction in the presence of specific cytokines and stromal support allows engraftment with an encouraging number of retrovirally modified cells. This is a US government work. There are no restrictions on its use.


Blood ◽  
2000 ◽  
Vol 96 (2) ◽  
pp. 498-505 ◽  
Author(s):  
Jose A. Cancelas ◽  
Wendy L. M. Koevoet ◽  
Alexandra E. de Koning ◽  
Angelique E. M. Mayen ◽  
Elwin J. C. Rombouts ◽  
...  

Abstract Gap junctions (GJs) provide for a unique system of intercellular communication (IC) allowing rapid transport of small molecules from cell to cell. GJs are formed by a large family of proteins named connexins (Cxs). Cx43 has been considered as the predominantly expressed Cx by hematopoietic-supporting stroma. To investigate the role of the Cx family in hemopoiesis, we analyzed the expression of 11 different Cx species in different stromal cell lines derived from murine bone marrow (BM) or fetal liver (FL). We found that up to 5 Cxs are expressed in FL stromal cells (Cx43, Cx45, Cx30.3, Cx31, and Cx31.1), whereas only Cx43, Cx45, and Cx31 were clearly detectable in BM stromal cells. In vivo, the Cx43-deficient 14.5- to 15-day FL cobblestone area–forming cells (CAFC)-week 1-4 and colony-forming unit contents were 26%-38% and 39%-47% lower than in their wild-type counterparts, respectively. The reintroduction of the Cx43 gene into Cx43-deficient FL stromal cells was able to restore their diminished IC to the level of the wild-type FL stromal cells. In addition, these Cx43-reintroduced stromal cells showed an increased support ability (3.7-fold) for CAFC-week 1 in normal mouse BM and 5-fold higher supportive ability for CAFC-week 4 in 5-fluorouracil-treated BM cells as compared with Cx43-deficient FL stromal cells. These findings suggest that stromal Cx43-mediated IC, although not responsible for all GJ-mediated IC of stromal cells, plays a role in the supportive ability for hemopoietic progenitors and stem cells.


Blood ◽  
1997 ◽  
Vol 89 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Dagmar Dilloo ◽  
Donna Rill ◽  
Claire Entwistle ◽  
Michael Boursnell ◽  
Wanyun Zhong ◽  
...  

Abstract Herpes simplex viruses (HSVs) would offer numerous advantages as vectors for gene transfer, but as yet they have not proved capable of transducing hematopoietic cells. Using a genetically inactivated form of HSV that is restricted to a single cycle of replication (disabled single-cycle virus, [DISC-HSV]), we have transduced normal human hematopoietic progenitor cells and primary leukemia blasts with efficiencies ranging from 80% to 100%, in the absence of growth factors or stromal support. Toxicity was low, with 70% to 100% of cells surviving the transduction process. Peak expression of transferred genes occurred at 24 to 48 hours after transduction with the DISC-HSV vector, declining to near background levels by 14 days. Despite this limitation, sufficient protein is produced by the inserted gene to permit consideration of the vector for applications in which transient expression is adequate. One example is the transfer of immunostimulatory genes, to generate leukemia immunogens. Thus, murine A20 leukemia cells transduced with a DISC-HSV vector encoding granulocyte-macrophage colony-stimulating factor were able to stimulate a potent antitumor response in mice, even against pre-existing leukemia. The exceptional transducing ability of the DISC-HSV vector should therefore facilitate genetic manipulation of normal and malignant human hematopoietic cells for biological and clinical investigation.


Biomaterials ◽  
2012 ◽  
Vol 33 (29) ◽  
pp. 6987-6997 ◽  
Author(s):  
Mónica S. Ventura Ferreira ◽  
Willi Jahnen-Dechent ◽  
Norina Labude ◽  
Manfred Bovi ◽  
Thomas Hieronymus ◽  
...  

Blood ◽  
1995 ◽  
Vol 86 (1) ◽  
pp. 101-110 ◽  
Author(s):  
JA Nolta ◽  
EM Smogorzewska ◽  
DB Kohn

We sought to define optimal conditions for retroviral-mediated transduction of long-lived human hematopoietic progenitors from bone marrow and peripheral blood. CD34+ cells were transduced by the LN and G2 retroviral vectors in the presence or absence of stromal support and with or without cytokine addition. After transduction, a portion of the cells was plated in methylcellulose colony-forming assay, with or without G418, to assess the extent of gene transfer into committed progenitors. The remaining cells from each experiment were transplanted into immunodeficient mice to allow analysis of transduction of long- lived progenitors. Human colony-forming cells contained within the murine bone marrow were analyzed after engraftment periods of 2 to 11 months. Cells were plated in a human-specific colony-forming assay with and without G418 to assess the extent of transduction of primitive progenitors. Individual human colonies were also analyzed by polymerase chain reaction for the presence of provirus. Bone marrow progenitors were efficiently transduced only when stroma was present, whereas mobilized peripheral blood progenitors were effectively transduced in the presence of either stroma or cytokines. Inclusion of the cytokines interleukin-3, interleukin-6, and stem cell factor did not further augment the extent of gene transfer in the presence of a stromal support layer. Additionally, human CD34+ progenitors from bone marrow or mobilized peripheral blood that had been transduced for 3 days in the absence of stroma failed to produce sustained, long-term engraftment of bnx mice. Mice transplanted with the same pools of human progenitors that had been transduced in the presence of stroma for 3 days had significant levels of human cell engraftment at the same timepoints, 7 to 11 months after transplantation. Our data show loss of long-lived human progenitors during 3-day in vitro transduction periods in the absence of stromal support. Therefore, the presence of bone marrow stroma has dual benefits in that it increases gene transfer efficiency and is essential for survival of long-lived human hematopoietic progenitors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2348-2348
Author(s):  
Beat C Bornhauser ◽  
Jeannette Boutter ◽  
Peter Horvath ◽  
Martin Stanulla ◽  
Jean-Pierre Bourquin

Abstract Abstract 2348 Leukemia cells are critically dependent upon interactions with the microenvironment in the bone marrow and at extramedullary sanctuary sites, which is likely to provide a protective mechanism to escape chemotherapy. In vitro, co-culture of primary ALL cells on human bone marrow derived mesenchymal stromal cells (MSCs) provides survival cues allowing long-term cultures. In contrast, primary ALL cells rapidly undergo cell death when cultured without stromal support. We developed an automated microscopy-based approach to identify pro-survival signals by RNA interference of candidate genes in MSCs and subsequent evaluation of leukemia cell survival, enabling us to functionally profile primary leukemia cells. We took advantage of our leukemia xenograft system as a renewable source of well characterized samples derived from cases with very high risk (VHR) ALL, which were selected based on clinical resistance to chemotherapy. Based on gene expression and cell surface proteomic data that we had obtained from both cellular compartments, we generated a customized siRNA library for 110 candidate genes with a potential function in stromal support. Primary ALL cells were seeded on reversely transfected MSC cells and ALL cell viability was assessed with a fluorescent vital dye after 6 days. Image analysis and machine learning algorithms were developed for quantification of surviving ALL cells on top of MSC. Evaluating three VHR-ALL cases we observed a strong decrease of viability when interfering with the expression of 14 candidate genes in 2 out of 3 patients. Interestingly, in validation studies with 7 additional cases, the pattern of dependence on the genes tested were confirmed to be only partially overlapping between patients, indicating the existence of functional differences in distinct subsets. As a proof of concept, we could show that down-regulation of VCAM1 or the VEGF pathway in MSCs decreased ALL survival supporting earlier studies. Concomitantly, inhibitors of VEGF signalling recapitulated ALL cell viability decrease for patients that showed to be dependent on VEGFC expression in MSCs. One of the strongest effects on ALL survival was achieved by down-regulation of the membrane protein Basigin (CD147). Specifically, 13 out of 17 ALL cases were affected by the modulation of Basigin on MSC level. Basigin has been implicated in cell signalling, in interactions with extracellular matrix and serves as chaperone to different membrane carrier proteins. Among putative Basigin interactors we identified the heteromeric amino acid transporter SLC3A2 (CD98) to be required for ALL survival in the same set of ALL cases. The down-regulation of Basigin, SLC3A2 or both together in MSC cells induces an increase in ROS in ALL cells resulting in apoptotic cell death, which indicates that Basigin/SLC3A2 function is important for the integrity of ALL cell metabolism in this model of the leukemia niche. We are now investigating which metabolites are implicated in the mechanism of action. Taken together, we have established a robust platform for systematic functional investigation of primary ALL survival in a 2-D model of the microenvironment and obtained evidence for patient-specific dependence of leukemia cell survival on stromal support. Critical interactions between ALL cells and bone marrow stromal cells can be identified with this approach, which will be useful for unbiased higher throughput screening and combinatorial testing. This platform will also be of great interest for preclinical drug profiling on clinically relevant patients samples in the context of protective bone marrow signals. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document