scholarly journals Method and its Composition for encapsulation, stabilization, and delivery of siRNA in Anionic polymeric nanoplex: An In vitro- In vivo Assessment

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Nidhi Raval ◽  
Hardi Jogi ◽  
Piyush Gondaliya ◽  
Kiran Kalia ◽  
Rakesh K. Tekade

Abstract Small interfering RNA (siRNA) are synthetic RNA duplex designed to specifically knockdown the abnormal gene to treat a disease at cellular and molecular levels. In spite of their high potency, specificity, and therapeutic potential, the full-fledged utility of siRNA is predominantly limited to in vitro set-up. Till date, Onpattro is the only USFDA approved siRNA therapeutics available in the clinic. The lack of a reliable in vivo siRNA delivery carrier remains a foremost obstacle towards the clinical translation of siRNA therapeutics. To address the obstacles associated with siRNA delivery, we tested a dendrimer-templated polymeric approach involving a USFDA approved carrier (albumin) for in vitro as well as in vivo delivery of siRNA. The developed approach is simple in application, enhances the serum stability, avoids in vivo RNase-degradation and mediates cytosolic delivery of siRNA following the endosomal escape process. The successful in vitro and in vivo delivery of siRNA, as well as targeted gene knockdown potential, was demonstrated by HDAC4 inhibition in vitro diabetic nephropathy (DN) podocyte model as well as in vivo DN C57BL/6 mice model. The developed approach has been tested using HDAC4 siRNA as a model therapeutics, while the application can also be extended to other gene therapeutics including micro RNA (miRNA), plasmids oligonucleotides, etc.

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


2020 ◽  
Vol 6 (30) ◽  
pp. eaba5379 ◽  
Author(s):  
Md. Nazir Hossen ◽  
Lin Wang ◽  
Harisha R. Chinthalapally ◽  
Joe D. Robertson ◽  
Kar-Ming Fung ◽  
...  

Gene silencing using small-interfering RNA (siRNA) is a viable therapeutic approach; however, the lack of effective delivery systems limits its clinical translation. Herein, we doped conventional siRNA-liposomal formulations with gold nanoparticles to create “auroliposomes,” which significantly enhanced gene silencing. We targeted MICU1, a novel glycolytic switch in ovarian cancer, and delivered MICU1-siRNA using three delivery systems—commercial transfection agents, conventional liposomes, and auroliposomes. Low-dose siRNA via transfection or conventional liposomes was ineffective for MICU1 silencing; however, in auroliposomes, the same dose gave >85% gene silencing. Efficacy was evident from both in vitro growth assays of ovarian cancer cells and in vivo tumor growth in human ovarian cell line—and patient-derived xenograft models. Incorporation of gold nanoparticles shifted intracellular uptake pathways such that liposomes avoided degradation within lysosomes. Auroliposomes were nontoxic to vital organs. Therefore, auroliposomes represent a novel siRNA delivery system with superior efficacy for multiple therapeutic applications.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Jin Sook Kwon ◽  
Erhe Gao ◽  
Rajika Roy ◽  
jessica Ibetti ◽  
J Kurt Chuprun ◽  
...  

Background and Purpose: The influence of β-adrenoceptor (βAR) signaling on the regulation of exosomes secreted from cardiomyocytes is unknown and since catecholamines are increased in heart failure (HF), there is interest in uncovering whether βARs can induce specific changes in the content of circulating blood exosomes in HF. In this study, we have evaluated whether βAR stimulation by isoproterenol (ISO) on neonatal rat ventricle myocytes (NRVMs) and in vivo in mice can alter the number, size and microRNA (miR) content of secreted exosomes. Methods and Results: ISO treatment of NRVMs did not change exosome number and size of compared than vehicle (PBS). After purifying total RNA from treated myocytes and secreted exosomes, we evaluated the expression level of 37 candidate miR’s, which were selected from previous microarray data. We found that ISO treatment decreased 14 miR’s (miR-222, -106a, -292a, -181b, -210, -489, -214, -1947, -195, -17, -7b, -93, -532 and -19a) in exosomes and in the myocytes themselves, mir-292a and -1947 were up regulated and mir-7b, down regulated. Further, ISO was then used to treat C57 mice via osmotic pump chronically. The number and size of exosomes purified from circulating blood was not changed after 2 and 8 weeks. We evaluated expression of the 14 miRs down-regulated in myocytes as well miR-1 and -21 (important cardiac miRs) both in the blood and hearts of ISO-treated mice. MiR-1 did not change in both blood exosomes and heart tissue and miR-21 was up-regulated in heart tissue but not in blood both at 2 and 8 weeks after ISO treatment. In addition, miRNA-489 and -7b was down-regulated in hearts with miR-214 and -292a up regulated. In blood exosomes, we found only down-regulation of miR-489 and -7b but not miR-214 and 292a. Conclusions: We found that the βAR agonist ISO altered exosomal miR contents but not exosome size and number from myocytes. Importantly, this was found in myocytes in culture and in vivo blood and myocardium that were treated with ISO but several differences were found and changes in blood and myocytes were not homogeneous. However, two miRs, mir-7b and -miR-489, both changes similarly from their origin (NRVMs or mouse hearts) and also in circulating blood exosomes. Therefore, these miRs may represent biomarkers for sympathetic nervous system abnormalities in HF and their therapeutic potential should be evaluated.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Seon Ok ◽  
Sa-Rang Oh ◽  
Tae-Sung Jung ◽  
Sang-Ok Jeon ◽  
Ji-wook Jung ◽  
...  

We investigated the cellular and molecular mechanisms mediating the effects ofAngelica gigasNakai extract (AGNE) through the mitogen-activated protein kinases (MAPKs)/NF-κB pathway usingin vitroandin vivoatopic dermatitis (AD) models. We examined the effects of AGNE on the expression of proinflammatory cytokines and chemokines in human mast cell line-1 (HMC-1) cells. Compound 48/80-induced pruritus and 2,4-dinitrochlorobenzene- (DNCB-) induced AD-like skin lesion mouse models were also used to investigate the antiallergic effects of AGNE. AGNE reduced histamine secretion, production of proinflammatory cytokines including interleukin- (IL-) 1β, IL-4, IL-6, IL-8, and IL-10, and expression of cyclooxygenase- (COX-) 2 in HMC-1 cells. Scratching behavior and DNCB-induced AD-like skin lesions were also attenuated by AGNE administration through the reduction of serum IgE, histamine, tumor necrosis factor-α(TNF-α), IL-6 levels, and COX-2 expression in skin tissue from mouse models. Furthermore, these inhibitory effects were mediated by the blockade of the MAPKs and NF-κB pathway. The findings of this study proved that AGNE improves the scratching behavior and atopy symptoms and reduces the activity of various atopy-related mediators in HMC-1 cells and mice model. These results suggest the AGNE has a therapeutic potential in anti-AD.


2021 ◽  
Author(s):  
Xiaolin Yu ◽  
Lu Xue ◽  
Jingjing Zhao ◽  
Shuhua Zhao ◽  
Daqing Wu ◽  
...  

Abstract Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effect, poor clearance, low serum stability, and high toxicity. In this study, we have genetically engineered a non-cationic tumor-targeted universal siRNA nanocarrier. This protein nanocarrier consists of three function domains: dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidines for endosome escape, and two RGD peptides at N-and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specific targets on integrin αvβ3 expressing cells in vitro, and homes siRNA to tumor in vivo. The delivered siRNA leads target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional, biomimetic, charge-neutral siRNA carrier is biodegradable, low toxic, suitable for mass production by fermentation, and serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.


2020 ◽  
Vol 15 (2) ◽  
pp. 155-172 ◽  
Author(s):  
Fiona Fernandes ◽  
Pooja Kotharkar ◽  
Adrija Chakravorty ◽  
Meenal Kowshik ◽  
Indrani Talukdar

Stem cell-based regenerative medicine holds exceptional therapeutic potential and hence the development of efficient techniques to enhance control over the rate of differentiation has been the focus of active research. One of the strategies to achieve this involves delivering siRNA into stem cells and exploiting the RNA interference (RNAi) mechanism. Transport of siRNA across the cell membrane is a challenge due to its anionic property, especially in primary human cells and stem cells. Moreover, naked siRNA incites immune responses, may cause off-target effects, exhibits low stability and is easily degraded by endonucleases in the bloodstream. Although siRNA delivery using viral vectors and electroporation has been used in stem cells, these methods demonstrate low transfection efficiency, cytotoxicity, immunogenicity, events of integration and may involve laborious customization. With the advent of nanotechnology, nanocarriers which act as novel gene delivery vehicles designed to overcome the problems associated with safety and practicality are being developed. The various nanomaterials that are currently being explored and discussed in this review include liposomes, carbon nanotubes, quantum dots, protein and peptide nanocarriers, magnetic nanoparticles, polymeric nanoparticles, etc. These nanodelivery agents exhibit advantages such as low immunogenic response, biocompatibility, design flexibility allowing for surface modification and functionalization, and control over the surface topography for achieving the desired rate of siRNA delivery and improved gene knockdown efficiency. This review also includes discussion on siRNA co-delivery with imaging agents, plasmid DNA, drugs etc. to achieve combined diagnostic and enhanced therapeutic functionality, both for in vitro and in vivo applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Sebastián Ezequiel Pérez ◽  
Yamila Gándola ◽  
Adriana Mónica Carlucci ◽  
Lorena González ◽  
Daniel Turyn ◽  
...  

The aim of the present work was to take advantage of lecithin’s biocompatibility along with its physicochemical properties for the preparation of lecithin-based nanocarriers for small interfering RNA (siRNA) delivery. Water lecithin dispersions were prepared in different conditions, loaded with siRNA at different N/P ratios, and evaluated for loading capacity. The most appropriate ones were then assayed for cytotoxicity and characterized in terms of particle size distribution, zeta potential, and morphology. Results demonstrated that formulations prepared at pH 5.0 and 7.0 were able to load siRNA at broad N/P ratios, and cellular uptake assays showed an efficient delivery of oligos in MCF-7 human breast cancer cells; fluorescent-labeled dsRNA mainly located next to its target, near the nucleus of the cells. No signs of toxicity were observed for broad compositions of lecithin. The physicochemical characterization of the siRNA-loaded dispersions exhibited particles of nanometric sizes and pH-dependant shapes, which make them suitable for ex vivo and in vivo further evaluation.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 85 ◽  
Author(s):  
Feiya Sheng ◽  
Lele Zhang ◽  
Songsong Wang ◽  
Lele Yang ◽  
Peng Li

Microglia mediated neuronal inflammation has been widely reported to be responsible for neurodegenerative disease. Deacetyl ganoderic acid F (DeGA F) is a triterpenoid isolated from Ganoderma lucidum, which is a famous edible and medicinal mushroom used for treatment of dizziness and insomnia in traditional medicine for a long time. In this study the inhibitory effects and mechanisms of DeGA F against lipopolysaccharide (LPS)-induced inflammation both in vitro and in vivo were investigated. On murine microglial cell line BV-2 cells, DeGA F treatment inhibited LPS-triggered NO production and iNOS expression and affected the secretion and mRNA levels of relative inflammatory cytokines. DeGA F inhibited LPS-induced activation of the NF-κB pathway, as evidenced by decreased phosphorylation of IKK and IκB and the nuclear translocation of P65. In vivo, DeGA F treatment effectively inhibited NO production in zebrafish embryos. Moreover, DeGA F suppressed the serum levels of pro-inflammatory cytokines, including TNF-α and IL-6 in LPS-stimulated mice model. DeGA F reduced inflammatory response by suppressing microglia and astrocytes activation and also suppressed LPS-induced NF-κB activation in mice brains. Taken together, DeGA F exhibited remarkable anti-inflammatory effects and promising therapeutic potential for neural inflammation associated diseases.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2182
Author(s):  
Xiaolin Yu ◽  
Lu Xue ◽  
Jing Zhao ◽  
Shuhua Zhao ◽  
Daqing Wu ◽  
...  

Despite the recent successes in siRNA therapeutics, targeted delivery beyond the liver remains the major hurdle for the widespread application of siRNA in vivo. Current cationic liposome or polymer-based delivery agents are restricted to the liver and suffer from off-target effects, poor clearance, low serum stability, and high toxicity. In this study, we genetically engineered a non-cationic non-viral tumor-targeted universal siRNA nanocarrier (MW 26 KDa). This protein nanocarrier consists of three function domains: a dsRNA binding domain (dsRBD) (from human protein kinase R) for any siRNA binding, 18-histidine for endosome escape, and two RGD peptides at the N- and C-termini for targeting tumor and tumor neovasculature. We showed that cloned dual-RGD-dsRBD-18his (dual-RGD) protein protects siRNA against RNases, induces effective siRNA endosomal escape, specifically targets integrin αvβ3 expressing cells in vitro, and homes siRNA to tumors in vivo. The delivered siRNA leads to target gene knockdown in the cell lines and tumor xenografts with low toxicity. This multifunctional and biomimetic siRNA carrier is biodegradable, has low toxicity, is suitable for mass production by fermentation, and is serum stable, holding great potential to provide a widely applicable siRNA carrier for tumor-targeted siRNA delivery.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1034 ◽  
Author(s):  
Shuqin Han ◽  
Tsogzolmaa Ganbold ◽  
Qingming Bao ◽  
Takashi Yoshida ◽  
Huricha Baigude

Sugars containing cationic polymers are potential carriers for in vitro and in vivo nucleic acid delivery. Monosaccharides such as glucose and galactose have been chemically conjugated to various materials of synergistic poly-lysine dendrimer systems for efficient and biocompatible delivery of short interfering RNA (siRNA). The synergistic dendrimers, which contain lipid conjugated glucose terminalized lysine dendrimers, have significantly lower adverse impact on cells while maintaining efficient cellular entry. Moreover, the synergistic dendrimers complexed to siRNA induced RNA interference (RNAi) in the cells and profoundly knocked down green fluorescence protein (GFP) as well as the endogenously expressing disease related gene Plk1. The new synergic dendrimers may be promising system for biocompatible and efficient siRNA delivery.


Sign in / Sign up

Export Citation Format

Share Document