scholarly journals Factors controlling accumulation of organic carbon in a rift-lake, Oligocene Vietnam

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Rizzi ◽  
J. Hovikoski ◽  
N. H. Schovsbo ◽  
J. Therkelsen ◽  
M. Olivarius ◽  
...  

Abstract Understanding of the processes of petroleum source rock (SR) accumulation in lacustrine rift basins and the behavior of lake systems as long-term carbon sinks is fragmentary. Investigation of an 800 m thick (500 m core and ~ 300 m outcrop), deep-lacustrine, Oligocene section in Vietnam, provides a rare insight into the controls and deposition of organic carbon (OC) and SR formation in continental rift basins. A multidisciplinary dataset, combining elemental data, inorganic and organic geochemistry with sedimentology, shows that the richest alginite-prone, sapropelic SR developed during periods of relative tectonic quiescence characterized by moderate primary productivity in a mainly dysoxic lacustrine basin. Increased rift activity and further development of graben morphology intensified water column stratification and anoxia, which hindered nutrient recycling. Sapropelic organic matter (OM) continued to accumulate, but with increasing amorphous OM content and decreasing total OC values. Periods of increased seasonality were characterized by thermocline weakening, enhanced mixing of water columns, increased primary productivity and diatom blooming. The results suggest that a change from dysoxia towards anoxia or extreme primary productivity does not necessarily enhance OC burial and SR quality. External nutrient input from a phosphate-rich hinterland is sufficient for sapropel formation, whereas the main limiting factor is methanogenesis.

2012 ◽  
Vol 63 (11) ◽  
pp. 967 ◽  
Author(s):  
James W. Fourqurean ◽  
Gary A. Kendrick ◽  
Laurel S. Collins ◽  
Randolph M. Chambers ◽  
Mathew A. Vanderklift

Seagrass meadows in Florida Bay and Shark Bay contain substantial stores of both organic carbon and nutrients. Soils from both systems are predominantly calcium carbonate, with an average of 82.1% CaCO3 in Florida Bay compared with 71.3% in Shark Bay. Soils from Shark Bay had, on average, 21% higher organic carbon content and 35% higher phosphorus content than Florida Bay. Further, soils from Shark Bay had lower mean dry bulk density (0.78 ± 0.01 g mL–1) than those from Florida Bay (0.84 ± 0.02 mg mL–1). The most hypersaline regions of both bays had higher organic carbon content in surficial soils. Profiles of organic carbon and phosphorus from Florida Bay indicate that this system has experienced an increase in P delivery and primary productivity over the last century; in contrast, decreasing organic carbon and phosphorus with depth in the soil profiles in Shark Bay point to a decrease in phosphorus delivery and primary productivity over the last 1000 y. The total ecosystem stocks of stored organic C in Florida Bay averages 163.5 MgCorg ha–1, lower than the average of 243.0 MgCorg ha–1 for Shark Bay; but these values place Shark and Florida Bays among the global hotspots for organic C storage in coastal ecosystems.


2020 ◽  
Vol 12 (5) ◽  
pp. 840 ◽  
Author(s):  
Dabin Lee ◽  
SeungHyun Son ◽  
HuiTae Joo ◽  
Kwanwoo Kim ◽  
Myung Joon Kim ◽  
...  

In recent years, the change of marine environment due to climate change and declining primary productivity have been big concerns in the East/Japan Sea, Korea. However, the main causes for the recent changes are still not revealed clearly. The particulate organic carbon (POC) to chlorophyll-a (chl-a) ratio (POC:chl-a) could be a useful indicator for ecological and physiological conditions of phytoplankton communities and thus help us to understand the recent reduction of primary productivity in the East/Japan Sea. To derive the POC in the East/Japan Sea from a satellite dataset, the new regional POC algorithm was empirically derived with in-situ measured POC concentrations. A strong positive linear relationship (R2 = 0.6579) was observed between the estimated and in-situ measured POC concentrations. Our new POC algorithm proved a better performance in the East/Japan Sea compared to the previous one for the global ocean. Based on the new algorithm, long-term POC:chl-a ratios were obtained in the entire East/Japan Sea from 2003 to 2018. The POC:chl-a showed a strong seasonal variability in the East/Japan Sea. The spring and fall blooms of phytoplankton mainly driven by the growth of large diatoms seem to be a major factor for the seasonal variability in the POC:chl-a. Our new regional POC algorithm modified for the East/Japan Sea could potentially contribute to long-term monitoring for the climate-associated ecosystem changes in the East/Japan Sea. Although the new regional POC algorithm shows a good correspondence with in-situ observed POC concentrations, the algorithm should be further improved with continuous field surveys.


Author(s):  
Anson W. Mackay ◽  
Rebecca Lee ◽  
James M. Russell

Abstract Rwenzori Mountains National Park, which straddles the border between the Democratic Republic of Congo and Uganda, has experienced rapid glacier loss since the beginning of the twentieth century, yet there has been little investigation of aquatic biodiversity change in the park. This study presents a paleolimnological analysis from Lake Mahoma (2990 m asl), which is situated in the bamboo-forest transition zone. Diatom and organic geochemistry data from a 39-cm-long sediment core with a basal age of c. 1715 CE were compared with new analyses of previously published data from Lakes Bujuku (3891 m asl) and Lower Kitandara (3989 m asl), in the alpine zone. Comparisons were made to determine if aquatic ecosystem changes exhibited similar inter-lake patterns over the past ~ 150 years of climate warming and glacial recession, or if only local change was apparent. The diatom flora of Lake Mahoma is acidophilous, dominated by Aulacoseira ikapoënsis since at least the mid eighteenth century. In recent decades, the obligate nitrogen-heterotroph Nitzschia palea increased in importance, concurrent with declining δ15Norg values. We suggest that these late twentieth century changes were linked to regional warming and increased thermal stratification of Lake Mahoma. Regional comparisons of the Rwenzori lakes were done using existing organic geochemistry records (total organic carbon, C/N and δ13Corg) and through diatom compositional turnover analyses, and categorisation of species into one of four diatom growth morphology traits, or guilds: tychoplanktonic, high-profile, low-profile and motile. Over the past 150 years, all three lakes showed unidirectional, compositional diatom turnover, indicating that deterministic processes had affected diatom communities. Declining turnover at each site is broadly mirrored by an increase in tychoplanktonic taxa, along with concomitant declines in high-profile diatoms at Lake Mahoma, and low-profile diatoms at Lake Bujuku, and at least for the past 60 years, at Lower Kitandara. The interplay between diatom guilds at all sites is mainly a consequence of competition for available resources. Sediment organic carbon at all sites comes from both autochthonous and allochthonous sources, the relative abundances of which are influenced by the time elapsed since lakes had glaciers in their catchment.


1983 ◽  
Vol 20 (12) ◽  
pp. 1780-1790 ◽  
Author(s):  
D. J. Russell ◽  
P. G. Telford

Preliminary results from a drilling programme aimed at evaluating the oil shale potential of the Whitby Formation (Upper Ordovician) of Ontario showed that the Craigleith Member of this unit possessed the greatest promise. However, some preliminary lithostratigraphic observations contradicted those of earlier workers, prompting a detailed analysis of the lithostratigraphy, log response, and organic geochemistry of this unit of organic-rich interbedded shale and limestone, also known informally as the "Collingwood shales." Previously grouped with overlying non-calcareous shales, these strata are found to be in gradational contact with underlying limestones of the Lindsay Formation. This, together with a sharp decrease in carbonate and organic carbon contents at their top, leads to their redefinition as the Collingwood Member of the Lindsay Formation. Analysis of subsurface data shows that the unit now termed the "Collingwood Formation" in well records does not contain any of the Collingwood strata as originally defined, and that the potential oil shales of the newly defined Collingwood Member have a significantly restricted distribution. The non-calcareous blue-grey shales previously referred to the upper part of the Whitby Formation are redefined as the Blue Mountain Formation, which is dominated by the brown and grey slightly organic and calcareous Rouge River Member only in the area east of Toronto.


1986 ◽  
Vol 43 (6) ◽  
pp. 1259-1270 ◽  
Author(s):  
Bruce J. Peterson ◽  
John E. Hobbie ◽  
Teresa L. Corliss

The carbon cycle of the Kuparuk River, a meandering tundra stream, is dominated by inputs of eroding peat and leaching dissolved organic carbon from the tundra. Net production of epilithic algae is about 13 g C∙m−2∙yr−1, an order of magnitude less than inputs of allochthonous particulate organic carbon and two orders of magnitude less than inputs of dissolved organic carbon. The streamwater has a mean total organic carbon concentration of 6.8 mg∙L−1, and the annual export of organic carbon from the watershed is 2–3 t∙km−2∙yr−1; both are similar to the average for temperate streams. However, because of the low primary productivity of tundra vegetation, the export of organic carbon from the watershed via the river is a larger fraction (2–6%) of the total watershed net primary production than the 0.1–0.4% usually found for temperate rivers.


2011 ◽  
Vol 138-139 ◽  
pp. 981-987
Author(s):  
Deng Ling Jiang ◽  
Guo Wei Ni ◽  
Yu Min Zhang

The effects of phosphorus and organic carbon on bacterial growth were investigated in the laboratory. The bacteria sampled from the drinking water network of Tianjin were inoculated into water samples with different content of phosphorus (0~15µg PO43--P/L) and assimilable organic carbon (10~200µgAOC/L). The inoculated water samples were incubated at 20°C. Bacterial growth was monitored in every 2 days in the beginning of cultivation and in every 4 days or more in the later of the cultivation. Results showed that Phosphorus had obvious promotion on bacterial growth, which included shortening the lag phase evidently, increasing the growth rate and the maximum cell count in stationary phase. Carbon can only increase bacterial number. Under oligotrophic condition,when ratio of AOC: P in nutrients of water was more than 100:5, phosphorus was the limiting factor of bacterial growth. The bacterial yield factors against phosphorus and AOC were 1.1×109CFU/µgP and 9.0×107CFU/µgAOC respectively. Phosphorus was more sensitive than AOC. When the phosphorus concentration was less than 0.7µg/L in water samples, it was very difficult for bacteria to obtain phosphorus, and then growth of bacteria was very slowly or in lag phase in the first nine days of incubation time. In drinking water with low concentration of phosphorus (<0.7µg/L) and disinfectants, bacterial regrowth may be controlled. The paper will be Narrated in two parts, “Effects of AOC and Phosphorus on Bacterial Growth under Oligotrophic Condition (1)” and “Effects of AOC and Phosphorus on Bacterial Growth under Oligotrophic Condition (2)”.


2002 ◽  
Vol 29 (3) ◽  
pp. 323 ◽  
Author(s):  
Edward A. Laws ◽  
Brian N. Popp ◽  
Nicolas Cassar ◽  
Jamie Tanimoto

The isotopic composition of organic carbon buried in marine sediments is an appealing proxy for palaeo CO2 concentrations due to the well-documented effect of CO2 concentrations on carbon fractionation by phytoplankton. However, a number of factors, in addition to CO2 concentrations, influence this fractionation. Included among these factors are cell geometry, in particular surface/volume ratios, growth rate, and the presence of CO2 concentrating mechanisms. Other potentially confounding factors are calcification, diagenesis, and the nature of the growth-rate-limiting factor, e.g. light vs nutrients. Because of these confounding factors, palaeoreconstructions based on the isotopic composition of organic carbon (δ13C) will almost certainly have to be based on the isotopic signatures of organic compounds that can be associated with a single species, or group of physiologically similar species. Long-chain alkenones produced by certain species of coccolithophores may provide a suitable diagnostic marker. By combining the δ13C of the alkenone carbon with the δ13C of coccolith carbon and the Sr/Ca ratio of the coccoliths, it is possible to calculate the extent of carbon fractionation (εp) and estimate growth rates. However, active transport of inorganic carbon tends to make εp insensitive to CO2 concentrations when the ratio of growth rate to CO2 concentration exceeds 0.285/rkg mol–1d–1, where r is the effective spherical radius of the cell in microns. Palaeo CO2 concentrations calculated from alkenone and coccolith δ13C data capture the gross features of CO2 concentrations in the Vostok ice core, but explain only 30–35% of the variance in the latter. The absence of a higher correlation may in part reflect the impact of active transport, particularly during glacial times. The impact of active transport may have been less severe prior to the Pleistocene, since CO2 concentrations are believed to have been higher than present-day values during most of Phanerozoic time.


2019 ◽  
Vol 157 (5) ◽  
pp. 818-828
Author(s):  
Lina Zhai ◽  
Shiming Wan ◽  
Ryuji Tada ◽  
Debo Zhao ◽  
Xuefa Shi ◽  
...  

AbstractAeolian dust input exerts significant influence on oceanic biogeochemical cycles and further potentially controls atmospheric CO2 concentrations. However, the possible link between long-term aeolian dust supply and primary productivity in the western North Pacific remains poorly understood. Here, we present a comprehensive study of major and trace elements and total organic carbon (TOC) concentrations of sediments from Integrated Ocean Drilling Program (IODP) Site U1430 in the southern Japan Sea, in order to reconstruct oceanic palaeoproductivity evolution and test its possible link to Asian dust input since 4 Ma. Palaeoproductivity proxies indicate remarkable increases in productivity at ∼3–2 Ma followed by high-frequency oscillations in productivity since 1.2 Ma. We suggest that higher dust-derived iron supply from Central Asia at 3–2 Ma, which was likely driven by the growth of the Northern Hemisphere ice sheets, could account for enhanced primary productivity and export production in the Japan Sea. Such increased oceanic palaeoproductivity could enhance organic carbon burial, which might contribute to the decrease in atmospheric CO2 concentrations, and provide a positive feedback to the global cooling. However, the Tsushima Warm Current (TSWC) intrusion via the southern Tsushima Strait, which was controlled by glacioeustatic sea level changes, has been the principal cause of the rapid changes in primary productivity and benthic redox condition since 1.2 Ma, regardless of continuously increased Asian dust input.


Sign in / Sign up

Export Citation Format

Share Document