scholarly journals The unprecedented diversity of UGT94-family UDP-glycosyltransferases in Panax plants and their contribution to ginsenoside biosynthesis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chengshuai Yang ◽  
Chaojing Li ◽  
Wei Wei ◽  
Yongjun Wei ◽  
Qunfang Liu ◽  
...  

Abstract More than 150 ginsenosides have been isolated and identified from Panax plants. Ginsenosides with different glycosylation degrees have demonstrated different chemical properties and bioactivity. In this study, we systematically cloned and characterized 46 UGT94 family UDP-glycosyltransferases (UGT94s) from a mixed Panax ginseng/callus cDNA sample with high amino acid identity. These UGT94s were found to catalyze sugar chain elongation at C3-O-Glc and/or C20-O-Glc of protopanaxadiol (PPD)-type, C20-O-Glc or C6-O-Glc of protopanaxatriol (PPT)-type or both C3-O-Glc of PPD-type and C6-O-Glc of PPT-type or C20-O-Glc of PPD-type and PPT-type ginsenosides with different efficiencies. We also cloned 26 and 51 UGT94s from individual P. ginseng and P. notoginseng plants, respectively; our characterization results suggest that there is a group of UGT94s with high amino acid identity but diverse functions or catalyzing activities even within individual plants. These UGT94s were classified into three clades of the phylogenetic tree and consistent with their catalytic function. Based on these UGT94s, we elucidated the biosynthetic pathway of a group of ginsenosides. Our present results reveal a series of UGTs involved in second sugar chain elongation of saponins in Panax plants, and provide a scientific basis for understanding the diverse evolution mechanisms of UGT94s among plants.

2019 ◽  
Vol 65 (11) ◽  
pp. 783-794
Author(s):  
Ajay Kumar Yadav ◽  
Kaushal Kishor Rajak ◽  
Mukesh Bhatt ◽  
Ashok Kumar ◽  
Soumendu Chakravarti ◽  
...  

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52–136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


Endocrinology ◽  
2000 ◽  
Vol 141 (9) ◽  
pp. 3343-3352 ◽  
Author(s):  
In-Taek Hwang ◽  
Yong-Hun Lee ◽  
Boung-Cheon Moon ◽  
Kyu-Youn Ahn ◽  
See-Woo Lee ◽  
...  

Abstract We have isolated a complementary DNA (cDNA) clone that encodes a new member of the PRL-like protein-C (PLP-C) subfamily of the PRL gene family. The clone was amplified from a 13.5-day-old mouse conceptus cDNA library by PCR using primers based on conserved regions of PLP-C sequences. The full-length cDNA encodes a predicted protein of 241 residues, which contains a putative signal sequence and 2 putative N-linked glycosylation sites. The predicted protein shares 55–66% amino acid identity with mouse PLP-Cα and rat PLP-D, PLP-H, PLP-Cv, and PLP-C and also contains 6 homologously positioned cysteine residues. Thus, we named this protein PLP-Cβ for consistency. We have also isolated rat PLP-Cβ from rat placenta cDNA library. Surprisingly, two messenger RNA (mRNA) isoforms of rat PLP-Cβ were isolated: one mRNA (rPLP-Cβ) encodes a 241-amino acid product, but another mRNA (rPLP-CβΔ39) lacks 39 bases that encode for a region rich in aromatic amino acids. The 39-bp region corresponds to exon 3 of other PLP-C subfamily members, such as PLP-Cα, PLP-Cv, and d/tPRP. It suggests that the two isoforms are probably generated by an alternative splicing from a single gene. RT-PCR analysis revealed that the rPLP-Cβ form was dominantly expressed in placenta, although both isoforms are coexpressed during placentation. The mouse PLP-Cβ mRNA expression, which was specific to the placenta, was first detected by Northern analysis on embryonic day 11.5 (E 11.5) and persisted until birth. However, in situ hybridization analysis revealed mPLP-Cβ expression on E 10.5 in specific trophoblast subsets, such as giant cells and spongiotrophoblast cells. mPLP-Cβ mRNA was detected in the labyrinthine zone on E 18.5, suggesting that spongiotrophoblast cells had penetrated the labyrinthotrophoblast zone. Consistent with the observed expression in trophoblast giant cells, PLP-Cβ expression was also detected in in vitro differentiated Rcho-1 cells, which express the trophoblast giant cell phenotype. In summary, overall high amino acid identity (79%), the locations of cysteine residues, and consensus sites for N-linked glycosylation between mouse and rat PLP-Cβ clearly indicate that PLP-Cβ is a bona fide member of the PLP-C subfamily. The conservation between mouse and rat, the presence of alternative isoforms, and the pattern of expression during gestation suggest the biological significance of PLP-Cβ during pregnancy.


Author(s):  
Sarocha Suthon ◽  
Rachel S. Perkins ◽  
Vitezslav Bryja ◽  
Gustavo A. Miranda-Carboni ◽  
Susan A. Krum

WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.


2002 ◽  
Vol 68 (7) ◽  
pp. 3651-3654 ◽  
Author(s):  
Chii-Ling Jeang ◽  
Li-Shien Chen ◽  
Ming-Yu Chen ◽  
Rong-Jen Shiau

ABSTRACT A raw-starch-digesting amylase (RSDA) gene from a Cytophaga sp. was cloned and sequenced. The predicted protein product contained 519 amino acids and had high amino acid identity to α-amylases from three Bacillus species. Only one of the Bacillus α-amylases has raw-starch-digesting capability, however. The RSDA, expressed in Escherichia coli, had properties similar to those of the enzyme purified from the Cytophaga sp.


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
C Torresi ◽  
F Granberg ◽  
L Bertolotti ◽  
A Oggiano ◽  
B Colitti ◽  
...  

Abstract In order to assess the molecular epidemiology of African swine fever (ASF) in Sardinia, we analyzed a wide range of isolates from wild and domestic pigs over a 31-year period (1978–2009) by genotyping sequence data from the genes encoding the p54 and the p72 proteins and the CVR. On this basis, the analysis of the B602L gene revealed a minor difference, placing the Sardinian isolates into two clusters according to their temporal distribution. As an extension of this study, in order to achieve a higher level of discrimination, three further variable genome regions, namely p30, CD2v, and I73R/I329L, of a large number of isolates collected from outbreaks in the years 2002–14 have been investigated. Sequence analysis of the CD2v region revealed a temporal subdivision of the viruses into two subgroups. These data, together with those from the B602L gene analysis, demonstrated that the viruses circulating in Sardinia belong to p72/genotype I, but since 1990 have undergone minor genetic variations in respect to its ancestor, thus making it impossible to trace isolates, enabling a more accurate assessment of the origin of outbreaks, and extending knowledge of virus evolution. To solve this problem, we have sequenced and annotated the complete genome of nine ASF isolates collected in Sardinia between 1978 and 2012. This was achieved using sequence data determined by next-generation sequencing. The results showed a very high identity with range of nucleotide similarity among isolates of 99.5 per cent to 99.9 per cent. The ASF virus (ASFV) genomes were composed of terminal inverted repeats and conserved and non-conserved ORFs. Among the conserved ORFs, B385R, H339R, and O61R-p12 showed 100 per cent amino acid identity. The same was true for the hypervariable ORFs, with regard to X69R, DP96R, DP60R, EP153R, B407L, I10L, and L60L genes. The EP402R and B602L genes showed, as expected, an amino acid identity range of 98.5 per cent to 100 per cent and 91 per cent to 100 per cent, respectively. In addition, all of the isolates displayed variable intergenic sequences. As a whole, the results from our studies confirmed a remarkable genetic stability of the ASFV/p72 genotype I viruses circulating in Sardinia.


2010 ◽  
Vol 65 (11-12) ◽  
pp. 719-725 ◽  
Author(s):  
Xiaoli Liu ◽  
Jun Chen ◽  
Zhifan Yang

Two cDNAs specific for P450 genes, CYP6AE28 and CYP6AE30, have been isolated from the rice leaf folder Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae). Both cDNApredicted proteins have 504 amino acid residues in length, but with molecular masses of 60177 Dalton for CYP6AE28 and 60020 Dalton for CYP6AE30, and theoretical pI values of 8.49 for CYP6AE28 and 8.56 for CYP6AE30, respectively. Both putative proteins contain the conserved structural and functional domains characteristic of all CYP6 members. CYP6AE28 and CYP6AE30 show 52% amino acid identity to each other; both of them have 49 - 56% identities with CYP6AE1, Cyp6ae12, and CYP6AE14. Phylogenetic analysis showed that the two P450s are grouped in the lineage containing some of the CYP6AE members, CYP6B P450s and CYP321A1. The transcripts of CYP6AE28 and CYP6AE30 were found to be induced in response to TKM-6, a rice variety with high resistance to C. medinalis. The results suggest that the two P450s may play important roles in adaptation to the host plant rice. This is the first report of P450 genes cloned in C. medinalis


2019 ◽  
Vol 64 (2) ◽  
Author(s):  
Laurent Poirel ◽  
Mattia Palmieri ◽  
Michael Brilhante ◽  
Amandine Masseron ◽  
Vincent Perreten ◽  
...  

ABSTRACT A carbapenem-resistant Pseudomonas synxantha isolate recovered from chicken meat produced the novel carbapenemase PFM-1. That subclass B2 metallo-β-lactamase shared 71% amino acid identity with β-lactamase Sfh-1 from Serratia fonticola. The blaPFM-1 gene was chromosomally located and likely acquired. Variants of PFM-1 sharing 90% to 92% amino acid identity were identified in bacterial species belonging to the Pseudomonas fluorescens complex, including Pseudomonas libanensis (PFM-2) and Pseudomonas fluorescens (PFM-3), highlighting that these species constitute reservoirs of PFM-like encoding genes.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
Sara Kleindienst ◽  
Karuna Chourey ◽  
Gao Chen ◽  
Robert W. Murdoch ◽  
Steven A. Higgins ◽  
...  

ABSTRACTDichloromethane (DCM) is susceptible to microbial degradation under anoxic conditions and is metabolized via the Wood-Ljungdahl pathway; however, mechanistic understanding of carbon-chlorine bond cleavage is lacking. The microbial consortium RM contains the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, which strictly requires DCM as a growth substrate. Proteomic workflows applied to DCM-grown consortium RM biomass revealed a total of 1,705 nonredundant proteins, 521 of which could be assigned to strain RM. In the presence of DCM, strain RM expressed a complete set of Wood-Ljungdahl pathway enzymes, as well as proteins implicated in chemotaxis, motility, sporulation, and vitamin/cofactor synthesis. Four corrinoid-dependent methyltransferases were among the most abundant proteins. Notably, two of three putative reductive dehalogenases (RDases) encoded within strain RM’s genome were also detected in high abundance. Expressed RDase 1 and RDase 2 shared 30% amino acid identity, and RDase 1 was most similar to an RDase ofDehalococcoides mccartyistrain WBC-2 (AOV99960, 52% amino acid identity), while RDase 2 was most similar to an RDase ofDehalobactersp. strain UNSWDHB (EQB22800, 72% amino acid identity). Although the involvement of RDases in anaerobic DCM metabolism has yet to be experimentally verified, the proteome characterization results implicated the possible participation of one or more reductive dechlorination steps and methyl group transfer reactions, leading to a revised proposal for an anaerobic DCM degradation pathway.IMPORTANCENaturally produced and anthropogenically released DCM can reside in anoxic environments, yet little is known about the diversity of organisms, enzymes, and mechanisms involved in carbon-chlorine bond cleavage in the absence of oxygen. A proteogenomic approach identified two RDases and four corrinoid-dependent methyltransferases expressed by the DCM degrader “CandidatusDichloromethanomonas elyunquensis” strain RM, suggesting that reductive dechlorination and methyl group transfer play roles in anaerobic DCM degradation. These findings suggest that the characterized DCM-degrading bacteriumDehalobacterium formicoaceticumand “CandidatusDichloromethanomonas elyunquensis” strain RM utilize distinct strategies for carbon-chlorine bond cleavage, indicating that multiple pathways evolved for anaerobic DCM metabolism. The specific proteins (e.g., RDases and methyltransferases) identified in strain RM may have value as biomarkers for monitoring anaerobic DCM degradation in natural and contaminated environments.


Sign in / Sign up

Export Citation Format

Share Document