scholarly journals WNT5B in Physiology and Disease

Author(s):  
Sarocha Suthon ◽  
Rachel S. Perkins ◽  
Vitezslav Bryja ◽  
Gustavo A. Miranda-Carboni ◽  
Susan A. Krum

WNT5B, a member of the WNT family of proteins that is closely related to WNT5A, is required for cell migration, cell proliferation, or cell differentiation in many cell types. WNT5B signals through the non-canonical β-catenin-independent signaling pathway and often functions as an antagonist of canonical WNT signaling. Although WNT5B has a high amino acid identity with WNT5A and is often assumed to have similar activities, WNT5B often exhibits unique expression patterns and functions. Here, we describe the distinct effects and mechanisms of WNT5B on development, bone, adipose tissue, cardiac tissue, the nervous system, the mammary gland, the lung and hematopoietic cells, compared to WNT5A. We also highlight aberrances in non-canonical WNT5B signaling contributing to diseases such as osteoarthritis, osteoporosis, obesity, type 2 diabetes mellitus, neuropathology, and chronic diseases associated with aging, as well as various cancers.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chengshuai Yang ◽  
Chaojing Li ◽  
Wei Wei ◽  
Yongjun Wei ◽  
Qunfang Liu ◽  
...  

Abstract More than 150 ginsenosides have been isolated and identified from Panax plants. Ginsenosides with different glycosylation degrees have demonstrated different chemical properties and bioactivity. In this study, we systematically cloned and characterized 46 UGT94 family UDP-glycosyltransferases (UGT94s) from a mixed Panax ginseng/callus cDNA sample with high amino acid identity. These UGT94s were found to catalyze sugar chain elongation at C3-O-Glc and/or C20-O-Glc of protopanaxadiol (PPD)-type, C20-O-Glc or C6-O-Glc of protopanaxatriol (PPT)-type or both C3-O-Glc of PPD-type and C6-O-Glc of PPT-type or C20-O-Glc of PPD-type and PPT-type ginsenosides with different efficiencies. We also cloned 26 and 51 UGT94s from individual P. ginseng and P. notoginseng plants, respectively; our characterization results suggest that there is a group of UGT94s with high amino acid identity but diverse functions or catalyzing activities even within individual plants. These UGT94s were classified into three clades of the phylogenetic tree and consistent with their catalytic function. Based on these UGT94s, we elucidated the biosynthetic pathway of a group of ginsenosides. Our present results reveal a series of UGTs involved in second sugar chain elongation of saponins in Panax plants, and provide a scientific basis for understanding the diverse evolution mechanisms of UGT94s among plants.


2002 ◽  
Vol 68 (7) ◽  
pp. 3651-3654 ◽  
Author(s):  
Chii-Ling Jeang ◽  
Li-Shien Chen ◽  
Ming-Yu Chen ◽  
Rong-Jen Shiau

ABSTRACT A raw-starch-digesting amylase (RSDA) gene from a Cytophaga sp. was cloned and sequenced. The predicted protein product contained 519 amino acids and had high amino acid identity to α-amylases from three Bacillus species. Only one of the Bacillus α-amylases has raw-starch-digesting capability, however. The RSDA, expressed in Escherichia coli, had properties similar to those of the enzyme purified from the Cytophaga sp.


2019 ◽  
Vol 65 (11) ◽  
pp. 783-794
Author(s):  
Ajay Kumar Yadav ◽  
Kaushal Kishor Rajak ◽  
Mukesh Bhatt ◽  
Ashok Kumar ◽  
Soumendu Chakravarti ◽  
...  

SLAM (CD150) and nectin-4 are the major morbillivirus receptors responsible for virus pathogenesis and host range expansion. Recently, morbillivirus infections have been reported in unnatural hosts, including endangered species, posing a threat to their conservation. To understand the host range expansion of morbilliviruses, we generated the full-length sequences of morbillivirus receptors (goat, sheep, and dog SLAM, and goat nectin-4) and tried to correlate their role in determining host tropism. A high level of amino acid identity was observed between the sequences of related species, and phylogenetic reconstruction showed that the receptor sequences of carnivores, marine mammals, and small ruminants grouped separately. Analysis of the ligand binding region (V region; amino acid residues 52–136) of SLAM revealed high amino acid identity between small ruminants and bovine SLAMs. Comparison of canine SLAM with ruminants and non-canids SLAM revealed appreciable changes, including charge alterations. Significant differences between feline SLAM and canine SLAM have been reported. The binding motifs of nectin-4 genes (FPAG motif and amino acid residues 60, 62, and 63) were found to be conserved in sheep, goat, and dog. The differences reported in the binding region may be responsible for the level of susceptibility or resistance of a species to a particular morbillivirus.


2016 ◽  
Vol 4 (3) ◽  
Author(s):  
Jane E. Libbey ◽  
Robert S. Fujinami

The murine pneumotropic virus genome encoded by the pKV(37-1) clone was sequenced to completion. The regulatory region harbored a mutation not previously reported. The protein coding regions (large and small T antigens, viral proteins 1 to 3) showed multiple regions of high amino acid identity to the human, simian, and bovine polyomaviruses.


2020 ◽  
Vol 40 (9) ◽  
pp. 1217-1231 ◽  
Author(s):  
Xiaoqin Guo ◽  
Hongjun Chen ◽  
Yue Liu ◽  
Wei Chen ◽  
Yeqing Ying ◽  
...  

Abstract Acid invertases (INVs) play a pivotal role in both vegetative and reproductive growth of plants. However, their possible functions in fast-growing plants such as bamboo are largely unknown. Here, we report the molecular characterization of acid INVs in Phyllostachys heterocycla cv. pubescens, a fast-growing bamboo species commercially grown worldwide. Nine acid INVs (PhINVs), including seven cell wall INVs (PhCWINV1, PhCWINV2, PhCWINV3, PhCWINV4, PhCWINV5, PhCWINV6 and PhCWINV7) and two vacuolar INVs (PhVINV11 and PhVINV12) were isolated. Bioinformatic analyses demonstrated that they all share high amino acid identity with other INVs from different plant species and contain the motifs typically conserved in acid INV. Enzyme activity assays revealed a significantly higher INV activity in the fast-growing tissues, such as the elongating internodes of stems. Detailed quantitative reverse-transcription PCR analyses showed various expression patterns of PhINVs at different developmental stages of the elongating stems. With the exception of PhCWINV6, all PhINVs were ubiquitously expressed in a developmental-specific manner. Further studies in Arabidopsis exhibited that constitutive expression of PhCWINV1, PhCWINV4 or PhCWINV7 increased the biomass production of transgenic plants, as indicated by augmented plant heights and shoot dry weights than the wild-type plants. All these results suggest that acid INVs play a crucial role in the internode elongation of P. heterocycla cv. pubescens and would provide valuable information for the dissection of their exact biological functions in the fast growth of bamboo.


Endocrinology ◽  
2000 ◽  
Vol 141 (9) ◽  
pp. 3343-3352 ◽  
Author(s):  
In-Taek Hwang ◽  
Yong-Hun Lee ◽  
Boung-Cheon Moon ◽  
Kyu-Youn Ahn ◽  
See-Woo Lee ◽  
...  

Abstract We have isolated a complementary DNA (cDNA) clone that encodes a new member of the PRL-like protein-C (PLP-C) subfamily of the PRL gene family. The clone was amplified from a 13.5-day-old mouse conceptus cDNA library by PCR using primers based on conserved regions of PLP-C sequences. The full-length cDNA encodes a predicted protein of 241 residues, which contains a putative signal sequence and 2 putative N-linked glycosylation sites. The predicted protein shares 55–66% amino acid identity with mouse PLP-Cα and rat PLP-D, PLP-H, PLP-Cv, and PLP-C and also contains 6 homologously positioned cysteine residues. Thus, we named this protein PLP-Cβ for consistency. We have also isolated rat PLP-Cβ from rat placenta cDNA library. Surprisingly, two messenger RNA (mRNA) isoforms of rat PLP-Cβ were isolated: one mRNA (rPLP-Cβ) encodes a 241-amino acid product, but another mRNA (rPLP-CβΔ39) lacks 39 bases that encode for a region rich in aromatic amino acids. The 39-bp region corresponds to exon 3 of other PLP-C subfamily members, such as PLP-Cα, PLP-Cv, and d/tPRP. It suggests that the two isoforms are probably generated by an alternative splicing from a single gene. RT-PCR analysis revealed that the rPLP-Cβ form was dominantly expressed in placenta, although both isoforms are coexpressed during placentation. The mouse PLP-Cβ mRNA expression, which was specific to the placenta, was first detected by Northern analysis on embryonic day 11.5 (E 11.5) and persisted until birth. However, in situ hybridization analysis revealed mPLP-Cβ expression on E 10.5 in specific trophoblast subsets, such as giant cells and spongiotrophoblast cells. mPLP-Cβ mRNA was detected in the labyrinthine zone on E 18.5, suggesting that spongiotrophoblast cells had penetrated the labyrinthotrophoblast zone. Consistent with the observed expression in trophoblast giant cells, PLP-Cβ expression was also detected in in vitro differentiated Rcho-1 cells, which express the trophoblast giant cell phenotype. In summary, overall high amino acid identity (79%), the locations of cysteine residues, and consensus sites for N-linked glycosylation between mouse and rat PLP-Cβ clearly indicate that PLP-Cβ is a bona fide member of the PLP-C subfamily. The conservation between mouse and rat, the presence of alternative isoforms, and the pattern of expression during gestation suggest the biological significance of PLP-Cβ during pregnancy.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2914
Author(s):  
Felix Wiedmann ◽  
Norbert Frey ◽  
Constanze Schmidt

Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.


2020 ◽  
Vol 21 (19) ◽  
pp. 7036
Author(s):  
Tianqiang Liu ◽  
Yue Deng ◽  
Zheng Zhang ◽  
Baolong Cao ◽  
Jing Li ◽  
...  

The melanocortin receptor 4 (MC4R) signaling system consists of MC4R, MC4R ligands [melanocyte-stimulating hormone (MSH), adrenocorticotropin (ACTH), agouti-related protein (AgRP)], and melanocortin-2 receptor accessory protein 2 (MRAP2), and it has been proposed to play important roles in feeding and growth in vertebrates. However, the expression and functionality of this system have not been fully characterized in teleosts. Here, we cloned tilapia MC4R, MRAP2b, AgRPs (AgRP, AgRP2), and POMCs (POMCa1, POMCb) genes and characterized the interaction of tilapia MC4R with MRAP2b, AgRP, α-MSH, and ACTH in vitro. The results indicate the following. (1) Tilapia MC4R, MRAP2b, AgRPs, and POMCs share high amino acid identity with their mammalian counterparts. (2) Tilapia MRAP2b could interact with MC4R expressed in CHO cells, as demonstrated by Co-IP assay, and thus decrease MC4R constitutive activity and enhance its sensitivity to ACTH1-40. (3) As in mammals, AgRP can function as an inverse agonist and antagonist of MC4R, either in the presence or absence of MRAP2b. These data, together with the co-expression of MC4R, MRAP2b, AgRPs, and POMCs in tilapia hypothalamus, suggest that as in mammals, ACTH/α-MSH, AgRP, and MRAP2 can interact with MC4R to control energy balance and thus play conserved roles in the feeding and growth of teleosts.


2010 ◽  
Vol 298 (3) ◽  
pp. L392-L403 ◽  
Author(s):  
David J. Foster ◽  
Priya Ravikumar ◽  
Dennis J. Bellotto ◽  
Roger H. Unger ◽  
Connie C. W. Hsia

Pulmonary dysfunction develops in type 2 diabetes mellitus (T2DM) in direct correlation with glycemia and is exacerbated by obesity; however, the associated structural derangement has not been quantified. We studied lungs from obese diabetic ( fa/fa) male Zucker diabetic fatty (ZDF) rats at 4, 12, and 36 wk of age, before and after onset of T2DM, compared with lean nondiabetic ( +/+) rats. Surfactant proteins A and C (SP-A and SP-C) immunoexpression in lung tissue was quantified at ages 14 and 18 wk, after the onset of T2DM. In fa/fa animals, lung volume was normal despite obesity. Numerous lipid droplets were visible within alveolar interstitium, lipofibroblasts, and macrophages, particularly in subpleural regions. Total triglyceride content was 136% higher. By 12 wk, septum volume was 21% higher, and alveolar duct volume was 36% lower. Capillary basement membrane was 29% thicker. Volume of lamellar bodies was 45% higher. By age 36 wk, volumes of interstitial collagen fibers, cells, and matrix were respectively 32, 25, and 80% higher, and capillary blood volume was 18% lower. ZDF rats exhibited a strain-specific increase in resistance of the air-blood diffusion barrier with age, which was exaggerated in fa/fa lungs compared with +/+ lungs. In fa/fa lungs, SP-A and SP-C expression were elevated at age 14–18 wk; the normal age-related increase in SP-A expression was accelerated, whereas SP-C expression declined with age. Thus lungs from obese T2DM animals develop many qualitatively similar changes as in type 1 diabetes mellitus but with extensive lipid deposition, altered alveolar type 2 cell ultrastructure, and surfactant protein expression patterns that suggest additive effects of hyperglycemia and lipotoxicity.


Sign in / Sign up

Export Citation Format

Share Document