scholarly journals The protective role of miR-223 in sepsis-induced mortality

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dan Liu ◽  
Zhiding Wang ◽  
Huijuan Wang ◽  
Feifei Ren ◽  
Yanqin Li ◽  
...  

Abstract Lymphocyte apoptosis appears to play an important role in immunodysfunction in sepsis. We investigated the role of miR-223 in cell proliferation and apoptosis to identify potential target downstream proteins in sepsis. We recruited 143 patients with sepsis and 44 healthy controls from the Chinese PLA General Hospital. Flow cytometry was used to sort monocytes, lymphocytes, and neutrophils from fresh peripheral blood. A miR-223 mimic and inhibitor were used for transient transfection of Jurkat T cells. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was used to assess expression of the miRNAs in cells. Western blot analysis was performed to measure protein expression. We evaluated the cell cycle and apoptosis by using flow cytometry (FCM) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). Expression of miR-223 was significantly higher in the survivor group than in the nonsurvivor group. Multiple linear regression analysis revealed that SOFA scores correlated negatively with miR-223 and monocyte counts, with β coefficients (95% CI) of − 0.048 (− 0.077, − 0.019) and − 47.707 (− 83.871, − 11.543), respectively. miR-223 expression also correlated negatively with the percentage of apoptosis in lymphocytes. The rate of apoptosis in the miR-223 mimic group was significantly lower than that of the negative control, with an adverse outcome observed in the miR-223 inhibitor group. We also found that miR-223 enhanced the proliferation of Jurkat T cells and that inhibiting miR-223 had an inhibitory effect on the G1/S transition. We conclude that miR-223 can serve as a protective factor in sepsis by reducing apoptosis and enhancing cell proliferation in lymphocytes by interacting with FOXO1. Potential downstream molecules are HSP60, HSP70, and HTRA.

2009 ◽  
pp. 1-8
Author(s):  
Jing-Lei Qu ◽  
Xiu-Juan Qu ◽  
Ming-Fang Zhao ◽  
Yue-E Teng ◽  
Ye Zhang ◽  
...  

2017 ◽  
Vol 4 (1) ◽  
pp. 189-215
Author(s):  
Yoiz Shofwa Shafrani

Perkembangan dunia perbankan syariah tidak lepas dari peran para nasabah yang memberikan kepercayaan terhadap pihak perbankan untuk penyimpanan asset keuangannya. Faktanya banyak kelompok nasabah yang memutuskan untuk menjadi nasabah di perbankan syariah karena faktor religiusitasnya. Faktor lain yang dapat ikut mempengaruhi keputusan nasabah adalah kualitas produk. Di mana kualitas produk merupakan karakteristik yang melekat dari suatu produk. Kemungkinan yang terjadi bahwa kebanyakan nasabah pada perbankan syariah juga masih merupakan nasabah perbankan konvensional.Tujuan yang ingin dicapai dalam penelitian ini adalah untuk mengetahui pengaruh kualitas produk dan tingkat religiusitas nasabah terhadap keputusan nasabah untuk menyimpan dananya atau tidak di BSM Cabang Purwokerto. Alat analisis yang digunakan adalah analisis regresi linier berganda, dengan jumlah sampel 100 nasabah. Diperoleh hasil Y = 5,046 + 0,101X1 + 0,218X2. Berdasarkan uji F yang sudah dilakukan maka dapat diketahui bahwa variabel kualitas produk dan religiusitas secara bersama – sama berpengaruh terhadap keputusan nasabah untuk menyimpan dananya di BSM Cabang Purwokerto. Berdasarkan uji t yang sudah dilakukan dapat diketahui bahwa secara partial baik variabel kualitas produk maupun variabel religiusitas berpengaruh terhadap keputusan nasabah untuk menyimpan dananya di BSM Cabang Purwokerto. The progress of the Islamic bank cannot be separated from the role of its customers who give trust to the bank to deposit their financial assets. It is a fact many groups of customers decide to be the customers of the Islamic bank because of their religiosity. The other influences factor of a customer’s decision is the quality of the product. The aim of this research was to determine the effect of product quality and level of customers’ religiosity towards customers’ decision whether to keep their funds in Syariah Mandiri Bank, Branch of Purwokerto, or not. The analytical tool used was multiple linear regression analysis, with a sample of 100 customers. The results indicate Y = 5,046 + 0,101X1 + 0,218X2. Based on F, it can be seen that both variables of product quality and religiosity simultanously affect the customers’ decision to keep theirfunds in BSM Branch of Purwokerto. Based on t test, it can be seen that independently, either variable of product quality or variables of religiosityinfluences the customers’ decision to keep their funds in BSM Branch of Purwokerto.


2019 ◽  
Vol 14 (2) ◽  
pp. 95
Author(s):  
Melia Frastuti ◽  
Dimas Pratama Putra ◽  
Erfan Effendi

Abstract     Almsgiving is one of the pillars supporting the upholding of Islam as the obligation for the adherents to improve horizontal relations between fellow humans and strengthen vertical relations with Allah SWT. The implementation of Islamic Social Responsibility (ISR) of the Islamic Bank gives a positive assessment in sharia agreement, justice and equality, responsibility for work, welfare, guarantee of nature preservation and benevolent assistance that is not profit-oriented.Proper almsgiving management and ISR implementation make Islamic banks trusted by the public in terms of service quality, satisfaction and loyalty of Muzzaki. It reduces bad images, and provides relevant impacts on social welfare and the progress of the era. The data analysis used to test the hypotheses is Multiple Linear Regression analysis. The data is collected by distributing questionnaires to Commissioners and Directors at 14 (fourteen) Islamic Commercial Banks spread throughout Indonesia. The result of this study shows partially prove the role of Islamic bank commissioners in the amsgiving management only, while the importance of the role of directors in Islamic banks in almsgiving management and the implementation of ISR partially. Keywords: Islamic Bank, Commissioners, Directors, Almsgiving and ISR


1997 ◽  
Vol 139 (5) ◽  
pp. 1209-1217 ◽  
Author(s):  
Jennifer M. Green ◽  
Alan D. Schreiber ◽  
Eric J. Brown

While many cell types express receptors for the Fc domain of IgG (FcγR), only primate polymorphonuclear neutrophils (PMN) express an FcγR linked to the membrane via a glycan phosphoinositol (GPI) anchor. Previous studies have demonstrated that this GPI-linked FcγR (FcγRIIIB) cooperates with the transmembrane FcγR (FcγRIIA) to mediate many of the functional effects of immune complex binding. To determine the role of the GPI anchor in Fcγ receptor synergy, we have developed a model system in Jurkat T cells, which lack endogenously expressed Fcγ receptors. Jurkat T cells were stably transfected with cDNA encoding FcγRIIA and/or FcγRIIIB. Cocrosslinking the two receptors produced a synergistic rise in intracytoplasmic calcium ([Ca2+]i) to levels not reached by stimulation of either FcγRIIA or FcγRIIIB alone. Synergy was achieved by prolonged entry of extracellular Ca2+. Cocrosslinking FcγRIIA with CD59 or CD48, two other GPI-linked proteins on Jurkat T cells also led to a synergistic [Ca2+]i rise, as did crosslinking CD59 with FcγRIIA on PMN, suggesting that interactions between the extracellular domains of the two Fcγ receptors are not required for synergy. Replacement of the GPI anchor of FcγRIIIB with a transmembrane anchor abolished synergy. In addition, tyrosine to phenylalanine substitutions in the immunoreceptor tyrosine-based activation motif (ITAM) of the FcγRIIA cytoplasmic tail abolished synergy. While the ITAM of FcγRIIA was required for the increase in [Ca2+]i, tyrosine phosphorylation of crosslinked FcγRIIA was diminished when cocrosslinked with FcγRIIIB. These data demonstrate that FcγRIIA association with GPI-linked proteins facilitates FcγR signal transduction and suggest that this may be a physiologically significant role for the unusual GPI-anchored FcγR of human PMN.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3904-3904
Author(s):  
Nadia El Khawanky ◽  
Amy Hughes ◽  
Wenbo Yu ◽  
Sanaz Taromi ◽  
Jade Clarson ◽  
...  

Chimeric antigen receptor T-cells (CAR Tc) have yielded impressive remission rates in treatment-refractory B-cell malignancies (B-ALL and B-lymphomas) by targeting CD19, resulting in the first FDA approved CAR Tc therapies, Kymriah and Yescarta. However, the translation of these results for other cancer entities remains a challenge. Pre-clinical studies using second-generation CAR Tc against the interleukin-3 receptor alpha chain (CD123) engendered strong anti-leukemic activity. CD123 CAR Tc clinical studies resulted in transient responses, or complete remission but at the expense of on-target off-tumor toxicities. Our studies employing third-generation anti-CD123 CAR Tc demonstrate strong anti-leukemic activity with no adverse effects in vivo. However, the leukemia was not completely eradicated. Combining anti-CD123 CAR Tc with DNA hypomethylating (HMA) agents may enhance the anti-leukemic effect and survival. HMAs such as azacytidine (Aza) activate key epigenetically silenced pathways in AML cells, inhibiting cell proliferation while enhancing cell immunogenicity. We hypothesized that Aza will increase the expression of CD123 on AML cells resulting in long-term disease eradication by anti-CD123 CAR Tc. The anti-leukemic efficacy, survival advantage, safety and feasibility of the combination treatment with Aza and anti-CD123 CAR Tc were evaluated in vivo. HL-60 (CD123med), MLL-2 (CD123lo), MOLM-13 (CD123hi), primary de novo and relapsed/refractory (r/r) AML cells were cultured for 0-8 days in the presence of Aza (0µM-5µM) and analysed for their CD123 expression by flow cytometry, quantitative western blot and RNAseq. The anti-CD123 CAR was constructed with the humanized CSL362-based ScFv and the CD28-OX40-CD3ζ signaling domain, encoded in a third-generation lentiviral vector and expressed in CD3+ Tc from healthy donors. Rag2γc-/- mice (n=12-16/ group) were engrafted with 1x105 MOLM13/ffLuc AML cells and treated with PBS, 5x106 Non-transduced (NTD) Tc orCAR Tc, 4x 2.5mg/kg Aza, or 5x106 CAR Tc following 4x Aza (2.5mg/kg). Leukemic burden was assessed weekly by bioluminescence imaging. Tc activity and immunophenotyping was performed using flow cytometry at day 35 post engraftment, and survival was monitored. HL-60, MLL-2 and MOLM-13 cells showed significant increases in HLA-DR, PD-L1, STAT1 and IRF7 expression, as well as CD123 when exposed to Aza (Fig 1A,B). Interestingly, the increased effect was seen from day one regardless of concentration. This was similarly reflected in AML patient cells. Aza treatment also arrested cell proliferation and decreased viability in both cell lines and patient cells suggesting Aza can aid in the anti-leukemic effect. Rag2γc-/- mice engrafted with MOLM-13 and treated with Aza and CD123 CAR Tc demonstrated suppressed growth, and eradication of MOLM-13 cells compared to mice treated with CD123 CAR Tc or Aza alone. Additionally, a significant decrease in residual CD123+ cells in the bone marrow (BM) of dual treated mice was seen (Fig 1C). A higher frequency of residual CD8+ T-cells in the BM, and CD4+ Tc in the peripheral blood (PB) and BM of dual treated mice was observed compared to CAR Tc only treated mice. Most prominently, we found a significantly higher mean number of stem cell-like and central memory CD8+ Tc in the BM of dual treated mice (232 cells/µl and 208cells/µl, respectively) compared to the CAR Tc only group (55 cells/µl and 23 cells/µl, respectively). Assessment of immune checkpoint markers on residual CAR Tc of dual treated mice revealed significantly decreased levels of CTLA-4, PD-1 and TIM-3 in the BM, and CTLA-4 in the PB compared to the CAR Tc only group. While CAR Tc treatment alone demonstrated a survival advantage compared to PBS, NTD or Aza treated mice, Aza and CAR Tc treatment had a significantly higher survival rate compared to the CAR Tc only group (92% vs. 46% at day 50, p<.01). Our findings indicate that Aza increases immunogenicity and augments the cell surface expression of CD123 on AML cells, allowing enhanced recognition and elimination of malignant cells by CD123 CAR Tc. This is the first demonstration that HMAs and CAR Tc immunotherapy can be used synergistically to treat AML. Considering HMAs are currently under clinical investigation in AML, our data encourage further clinical evaluation of this dual treatment in r/r AML, including high-risk patients that are chemotherapy or allogeneic transplantation ineligible. Disclosures Hughes: Novartis, Bristol-Myers Squibb, Celgene: Research Funding; Novartis, Bristol-Myers Squibb: Consultancy, Other: Travel. White:BMS: Honoraria, Research Funding; AMGEN: Honoraria, Speakers Bureau. Yong:Novartis: Honoraria, Research Funding; Celgene: Research Funding; BMS: Honoraria, Research Funding.


2021 ◽  
Author(s):  
Arnika K Wagner ◽  
Nadir Kadri ◽  
Chris Tibbitt ◽  
Koen van de Ven ◽  
Sunitha Bagawath-Singh ◽  
...  

ABSTRACTAlthough PD-1 was shown to be a hallmark of T cells exhaustion, controversial studies have been reported on the role of PD-1 on NK cells. Here, we found by flow cytometry and single cell RNA sequencing analysis that PD-1 can be expressed on MHC class I-deficient tumor-infiltrating NK cells in vivo. We also demonstrate distinct alterations in the phenotype of PD-1-deficient NK cells which in part could be attributed to a decrease in tumor-infiltrating NK cells in PD-1-deficient mice. NK cells from PD-1-deficient mice exhibited a more mature phenotype which might reduce their capacity to migrate and kill in vivo. Finally, our results demonstrate that PD-L1 molecules in membranes of PD-1-deficient NK cells migrate faster than in NK cells from wildtype mice, suggesting that PD-1 and PD-L1 form cis interactions with each other on NK cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Zhixing Jin ◽  
Li Wang ◽  
Zhiling Zhu

Objective. To evaluate the effect of GuiXiong Xiaoyi Wan (GXXYW) on the development of endometriosis in a rat model.Methods. Sprague-Dawley rats with surgically induced endometriosis were randomly treated with low-dose GXXYW, high-dose GXXYW, or vehicle (negative control) for 28 days. Immunohistochemistry was used to assess cell proliferation in the lesions. The terminal deoxynucleotidyl transferase- (TdT-) mediated dUTP biotin nick end labelling (TUNEL) method was performed to analyse the apoptosis induced by GuiXiong Xiaoyi Wan. The percentages of CD3+ lymphocytes, CD4+ lymphocytes, and CD8+ lymphocytes in the spleens of the rats were evaluated using flow cytometric analysis.Results. Treatment with GXXYW significantly decreased the lesion size, inhibited cell proliferation, and induced apoptosis in endometriotic tissue. The spleens of GXXYW-treated rats also demonstrated a significant increase in the percentage of CD4+ lymphocytes and a significant decrease in the percentage of CD8+ lymphocytes.Conclusions. These results suggest that, in a rat model, GXXYW may be effective in the suppression of the growth of endometriosis, possibly through the inhibition of cell proliferation, the induction of apoptosis of endometriotic cells, and the regulation of the immune system.


2020 ◽  
Vol 48 (6) ◽  
pp. 030006052092641
Author(s):  
Zhili Chen ◽  
Yuxi Chen ◽  
Jue Zhou ◽  
Yong Li ◽  
Changyao Gong ◽  
...  

Objective Inflammation is the primary mechanism of lung ischemia-reperfusion injury (LIRI) and neurologic factors can regulate inflammatory immune responses. Netrin-1 is an axonal guidance molecule, but whether Netrin-1 plays a role in LIRI remains unclear. Methods A mouse model of LIRI was established. Immunohistochemistry was used to detect expression of Netrin-1 and to enumerate macrophages and T cells in lung tissue. The proportion of regulatory T cells (Tregs) was assessed by flow cytometry. Levels of apoptosis were assessed by terminal deoxynucleotidyl transferase dUTP nick end staining. Results Numbers of macrophages and T cells in the lung tissues of mice with LIRI were elevated, while expression of netrin-1 was significantly decreased. Flow cytometry showed that the proportion of Tregs in mice with LIRI was significantly decreased. The proportion of Tregs among lymphocytes was positively correlated with netrin-1 expression. In vitro experiments showed that netrin-1 promoted an increase in Treg proportion through the A2b receptor. Animal experiments showed that netrin-1 could inhibit apoptosis and reduce T cell and macrophage infiltration by increasing the proportion of Tregs, ultimately reducing LIRI. Treg depletion using an anti-CD25 monoclonal antibody blocked the effects of netrin-1. Conclusion Netrin-1 reduced LIRI by increasing the proportion of Tregs.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 5256-5256
Author(s):  
Doug Cipkala ◽  
Kelly McQuown ◽  
Lindsay Hendey ◽  
Michael Boyer

Abstract The use of cytotoxic T-lymphocytes (CTL) has been attempted experimentally with various tumors to achieve disease control. Factors that may influence GVT include CTL cytotoxicity, ability to home to disease sites, and survival of T cells in the host. The objective of our study is to evaluate the GVL effects of human alloreactive CTL against ALL in a chimeric NOD/scid mouse model. CTL were generated from random blood donor PBMCs stimulated with the 697 human ALL cell line and supplemented with IL-2, -7, or -15. CTL were analyzed for in vitro cytotoxicity against 697 cells, phenotype, and in vitro migration on day 14. NOD/scid mice were injected with 107 697 ALL cells followed by 5x106 CTL. Mice were sacrificed seven days following CTL injection and residual leukemia was measured in the bone marrow and spleen via flow cytometry. The ratios of CD8/CD4 positive T cells at the time of injection were 46/21% for IL-2, 52/31% for IL-7, and 45/14% for IL-15 cultured CTL (n=13). Control mice not receiving CTL had a baseline leukemia burden of 2.01% and 0.15% in the bone marrow and spleen, respectively (n=15). Mice treated with IL-15 cultured CTL had a reduction in tumor burden to 0.2% (n=13, p=0.01) and 0.05% (n=13, p=0.01) in bone marrow and spleen, respectively. Those treated with IL-2 or IL-7 cultured CTL showed no significant difference in leukemia burden in either the bone marrow (IL-2 1.28%, Il-7 5.97%) or spleen (IL-2 0.4%, IL-7 0.33%). No residual CTL could be identified in the bone marrow or spleen at the time of sacrifice in any CTL group. CTL grown in each cytokine resulted in similar in vitro cytotoxicity at an effector:target ratio of 10:1 (IL-2 41.3%, IL-7 37.7%, IL-15 45.3%, n=12–15, p&gt;0.05 for all groups) and had statistically similar intracellular perforin and granzyme-B expression. In vitro CTL migration to a human mesenchymal stem cell line was greatest with IL-15 CTL (30.5%, n=4), followed by IL-7 CTL (18.9%, n=4), and least in IL-2 CTL (17.9%, n=4), though the differences were not significant. In vitro CTL migration was analyzed to an SDF-1α gradient as CXCR4/SDF-1α interactions are necessary for hematopoietic progenitor cell homing to the bone marrow. IL-15 cultured CTL showed the highest migration (48.8%, n=8) as compared to IL-2 (21.7%, n=6, p=0.048) or IL-7 CTL (35.9%, n=8, p&gt;0.05). However, surface expression of CXCR4 measured by flow cytometry was significantly higher in IL-7 CTL (89.4%, n=9) compared to IL-2 CTL (52.2%, n=9, p&lt;0.001) and IL-15 CTL (65.4%, n=10, p=0.002). Experiments are currently underway to further evaluate the role of CXCR4/SDF-1α in GVL. Preliminary in vivo experiments do not suggest any significant differences in CTL engraftment when evaluated at 24 hours post injection. Expression of the anti-apoptotic bcl-2 protein was greatest on IL-7 (MFI=5295, n=13) and IL-15 (MFI=4865, n=14) when compared to IL-2 CTL (MFI=3530, n=13, p=0.02 vs. IL-7, p=0.05 vs. IL-15), suggesting an increased in vivo survival ability. We hypothesize that IL-15 cultured CTL have greater GVL effects due to either higher in vivo survival, greater bone marrow homing efficiency, or both. Future experiments are planned to evaluate in vivo administration of IL-2 to enhance CTL survival in the host. In conclusion, IL-15 cultured CTL had significantly greater in vivo GVL effects compared to IL-2 and IL-7 CTL in the NOD/scid mouse model. This model can be utilized to evaluate the mechanism of T cell mediated GVL against ALL and potentially other human malignancies.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2291-2291
Author(s):  
Takamitsu Mizobe ◽  
Junichi Tsukada ◽  
Takehiro Higashi ◽  
Fumihiko Mouri ◽  
Ai Matsuura ◽  
...  

Abstract Human T-cell leukemia virus type I (HTLV-I) is etiologically associated with the development of an aggressive and fatal malignancy of CD4+ T lymphocytes called adult T-cell leukemia (ATL). Constitutive activation of nuclear factor-κB (NF-κB) is a common feature of ATL. Although the mechanism by which NF-κB is spontaneously activated in ATL cells still remains unclear, inhibition of NF-κB activity induces apoptosis, suggesting a central role of NF-κB in their proliferation. Toll like receptors (TLRs) are involved in innate cell activation by conserved structures expressed by microorganisms. Engagement of IL-1R or TLR with their cognate ligands causes an adaptor protein MyD88 to be recruited to the receptor complex, which in turn promotes its association with the IL-1R-associated kinase (IRAK) via an interaction between the respective death domains of each molecule. Several recent reports have indicated unique expression profiles of TLRs on different subsets of human T cells, and that some TLR ligands modulate the function of human T cells. We examined expression of the TLR mRNAs in primary ATL cells and ATL cell lines, MT2, MT4 and HUT102 by RT-PCR. Expression of TLR mRNAs, except of TLR7 and TLR8, was detected in all cell samples examined. We further demonstrated constitutive association of MyD88, an adaptor protein for the TLR signaling, with the IL-1R-associated kinase 1 (IRAK1) in ATL cell lines, MT2, MT4 and HUT102. In MT2 cells, constitutive activation of NF-κB and NF-IL6, but not Stat3 was significantly inhibited by expression of a dominant negative form of MyD88 protein (MyD88dn). Spontaneous transcriptional activation of IL-1α, IFN-γ and TNF-α gene promoters in MT2 cells was also suppressed by MyD88dn expression. MyD88dn inhibited cell proliferation and induced apoptosis of MT2 cells. In addition, overexpression of wild-type MyD88 and HTLV-I Tax induces synergistically transcriptional activity of NF-κB in 293T cells, showing interaction of Tax with MyD88. Thus, our results show a critical role of MyD88 in dysregulated gene activation and cell proliferation in HTLV-I-transformed T-cells, and further suggest the involvement of MyD88 in Tax-mediated intracellular signal transduction in HTLV-I-infected cells. Considering the fact that blocking NF-κB is a potential strategy to treat ATL, our argument raises a possibility that we may be able to find new treatment targets against ATL.


Sign in / Sign up

Export Citation Format

Share Document