scholarly journals Tagging the proteasome active site β5 causes tag specific phenotypes in yeast

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kenrick A. Waite ◽  
Alicia Burris ◽  
Jeroen Roelofs

Abstract The efficient and timely degradation of proteins is crucial for many cellular processes and to maintain general proteostasis. The proteasome, a complex multisubunit protease, plays a critical role in protein degradation. Therefore, it is important to understand the assembly, regulation, and localization of proteasome complexes in the cell under different conditions. Fluorescent tags are often utilized to study proteasomes. A GFP-tag on the β5 subunit, one of the core particle (CP) subunits with catalytic activity, has been shown to be incorporated into proteasomes and commonly used by the field. We report here that a tag on this subunit results in aberrant phenotypes that are not observed when several other CP subunits are tagged. These phenotypes appear in combination with other proteasome mutations and include poor growth, and, more significantly, altered 26S proteasome localization. In strains defective for autophagy, β5-GFP tagged proteasomes, unlike other CP tags, localize to granules upon nitrogen starvation. These granules are reflective of previously described proteasome storage granules but display unique properties. This suggests proteasomes with a β5-GFP tag are specifically recognized and sequestered depending on physiological conditions. In all, our data indicate the intricacy of tagging proteasomes, and possibly, large complexes in general.

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Richard S Marshall ◽  
Richard D Vierstra

26S proteasome abundance is tightly regulated at multiple levels, including the elimination of excess or inactive particles by autophagy. In yeast, this proteaphagy occurs upon nitrogen starvation but not carbon starvation, which instead stimulates the rapid sequestration of proteasomes into cytoplasmic puncta termed proteasome storage granules (PSGs). Here, we show that PSGs help protect proteasomes from autophagic degradation. Both the core protease and regulatory particle sub-complexes are sequestered separately into PSGs via pathways dependent on the accessory proteins Blm10 and Spg5, respectively. Modulating PSG formation, either by perturbing cellular energy status or pH, or by genetically eliminating factors required for granule assembly, not only influences the rate of proteasome degradation, but also impacts cell viability upon recovery from carbon starvation. PSG formation and concomitant protection against proteaphagy also occurs in Arabidopsis, suggesting that PSGs represent an evolutionarily conserved cache of proteasomes that can be rapidly re-mobilized based on energy availability.


Pathogens ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 286
Author(s):  
Mary Frances Nakamya ◽  
Moses B. Ayoola ◽  
Leslie A. Shack ◽  
Mirghani Mohamed ◽  
Edwin Swiatlo ◽  
...  

Polyamines such as putrescine, cadaverine, and spermidine are small cationic molecules that play significant roles in cellular processes, including bacterial stress responses and host–pathogen interactions. Streptococcus pneumoniae is an opportunistic human pathogen, which causes several diseases that account for significant morbidity and mortality worldwide. As it transits through different host niches, S. pneumoniae is exposed to and must adapt to different types of stress in the host microenvironment. We earlier reported that S. pneumoniae TIGR4, which harbors an isogenic deletion of an arginine decarboxylase (ΔspeA), an enzyme that catalyzes the synthesis of agmatine in the polyamine synthesis pathway, has a reduced capsule. Here, we report the impact of arginine decarboxylase deletion on pneumococcal stress responses. Our results show that ΔspeA is more susceptible to oxidative, nitrosative, and acid stress compared to the wild-type strain. Gene expression analysis by qRT-PCR indicates that thiol peroxidase, a scavenger of reactive oxygen species and aguA from the arginine deiminase system, could be important for peroxide stress responses in a polyamine-dependent manner. Our results also show that speA is essential for endogenous hydrogen peroxide and glutathione production in S. pneumoniae. Taken together, our findings demonstrate the critical role of arginine decarboxylase in pneumococcal stress responses that could impact adaptation and survival in the host.


2021 ◽  
Vol 22 (6) ◽  
pp. 2864
Author(s):  
Anna Pulawska-Czub ◽  
Tomasz D. Pieczonka ◽  
Paula Mazurek ◽  
Krzysztof Kobielak

Nails are highly keratinized skin appendages that exhibit continuous growth under physiological conditions and full regeneration upon removal. These mini-organs are maintained by two autonomous populations of skin stem cells. The fast-cycling, highly proliferative stem cells of the nail matrix (nail stem cells (NSCs)) predominantly replenish the nail plate. Furthermore, the slow-cycling population of the nail proximal fold (nail proximal fold stem cells (NPFSCs)) displays bifunctional properties by contributing to the peri-nail epidermis under the normal homeostasis and the nail structure upon injury. Here, we discuss nail mini-organ stem cells’ location and their role in skin and nail homeostasis and regeneration, emphasizing their importance to orchestrate the whole digit tip regeneration. Such endogenous regeneration capabilities are observed in rodents and primates. However, they are limited to the region adjacent to the nail’s proximal area, indicating the crucial role of nail mini-organ stem cells in digit restoration. Further, we explore the molecular characteristics of nail mini-organ stem cells and the critical role of the bone morphogenetic protein (BMP) and Wnt signaling pathways in homeostatic nail growth and digit restoration. Finally, we investigate the latest accomplishments in stimulating regenerative responses in regeneration-incompetent injuries. These pioneer results might open up new opportunities to overcome amputated mammalian digits and limbs’ regenerative failures in the future.


Reproduction ◽  
2021 ◽  
Author(s):  
Vasiliki E. Mourikes ◽  
Jodi A Flaws

The ovaries play a critical role in female reproductive health because they are the site of oocyte maturation and sex steroid hormone production. The unique cellular processes that take place within the ovary make it a susceptible target for chemical mixtures. Herein, we review the available data regarding the effects of chemical mixtures on the ovary, focusing on development, folliculogenesis, and steroidogenesis. The chemical mixtures discussed include those to which women are exposed to environmentally, occupationally, and medically. Following a brief introduction to chemical mixture components, we describe the effects of chemical mixtures on ovarian development, folliculogenesis, and steroidogenesis. Further, we discuss the effects of chemical mixtures on corpora lutea and transgenerational outcomes. Identifying the effects of chemical mixtures on the ovaries is paramount to preventing and treating mixture-inducing toxicity of the ovary that has long-term consequences such as infertility and ovarian disease.


2020 ◽  
Author(s):  
Sofia Doello ◽  
Markus Burkhardt ◽  
Karl Forchhammer

The ability to resume growth after a dormant period is an important strategy for the survival and spreading of bacterial populations. Energy homeostasis is critical in the transition into and out of a quiescent state. Synechocystis sp. PCC 6803, a non-diazotrophic cyanobacterium, enters metabolic dormancy as a response to nitrogen starvation. We used Synechocystis as a model to investigate the regulation of ATP homeostasis during dormancy and unraveled a critical role for sodium bioenergetics in dormant cells. During nitrogen starvation, cells reduce their ATP levels and engage sodium bioenergetics to maintain the minimum ATP content required for viability. When nitrogen becomes available, energy requirements rise, and cells immediately increase ATP levels employing sodium bioenergetics and glycogen catabolism. These processes allow them to restore the photosynthetic machinery and resume photoautotrophic growth. Our work reveals a precise regulation of the energy metabolism essential for bacterial survival during periods of nutrient deprivation.


2021 ◽  
Author(s):  
Antonio Real-Hohn ◽  
Martin Groznica ◽  
Georg Kontaxis ◽  
Rong Zhu ◽  
Otávio Chaves ◽  
...  

Abstract The ~ 2.4 µm long rhinovirus ss(+)RNA genome consists of roughly 7,200 nucleotides. It is tightly folded to fit into the ~ 22 nm diameter void in the protein capsid. In addition to previously predicted secondary structural elements in the RNA, using the QGRS mapper, we revealed the presence of multiple quadruplex forming G-rich sequences (QGRS) in the RV-A, B, and C clades, with four of them being exquisitely conserved. The biophysical analyses of ribooligonucleotides corresponding to selected QGRS demonstrate G-quadruplex (GQ) formation in each instance and resulted in discovering another example of an unconventional, two-layer zero-nucleotide loop RNA GQ stable at physiological conditions. By exploiting the temperature-dependent viral breathing to allow diffusion of small compounds into the virion, we demonstrate that the GQ-binding compounds PhenDC3 and pyridostatin (PDS) uniquely interfere with viral uncoating. Remarkably, this inhibition was entirely prevented in the presence of K+ but not Na+, despite the higher GQ stabilising effect of K+. Based on virus thermostability studies combined with ultrastructural imaging of isolated viral RNA, we propose a mechanism where Na+ keeps the encapsidated genome loose, allowing its penetration by PDS to promote the transition of QGRS sequestered in alternative metastable structures into GQs. The resulting conformational change then materialises in a severely compromised RNA release from the proteinaceous shell. Targeting extracellularly circulating RVs with GQ-stabilisers might thus become a novel way of combating the common cold.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ryosuke Hayama ◽  
Peizhen Yang ◽  
Federico Valverde ◽  
Tsuyoshi Mizoguchi ◽  
Ikuyo Furutani-Hayama ◽  
...  

AbstractProtein ubiquitylation participates in a number of essential cellular processes including signal transduction and transcription, often by initiating the degradation of specific substrates through the 26S proteasome. Within the ubiquitin-proteasome system, deubiquitylating enzymes (DUBs) not only help generate and maintain the supply of free ubiquitin monomers, they also directly control functions and activities of specific target proteins by modulating the pool of ubiquitylated species. Ubiquitin carboxyl-terminal hydrolases (UCHs) belong to an enzymatic subclass of DUBs, and are represented by three members in Arabidopsis, UCH1, UCH2 and UCH3. UCH1 and UCH2 influence auxin-dependent developmental pathways in Arabidopsis through their deubiquitylation activities, whereas biological and enzymatic functions of UCH3 remain unclear. Here, we demonstrate that Arabidopsis UCH3 acts to maintain the period of the circadian clock at high temperatures redundantly with UCH1 and UCH2. Whereas single uch1, uch2 and uch3 mutants have weak circadian phenotypes, the triple uch mutant displays a drastic lengthening of period at high temperatures that is more extreme than the uch1 uch2 double mutant. UCH3 also possesses a broad deubiquitylation activity against a range of substrates that link ubiquitin via peptide and isopeptide linkages. While the protein target(s) of UCH1-3 are not yet known, we propose that these DUBs act on one or more factors that control period length of the circadian clock through removal of their bound ubiquitin moieties, thus ensuring that the clock oscillates with a proper period even at elevated temperatures.


2019 ◽  
Vol 20 (9) ◽  
pp. 2241 ◽  
Author(s):  
Debarati Banik ◽  
Sara Moufarrij ◽  
Alejandro Villagra

Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration. Finally, we have included examples of ongoing trials for each of the above categories of HDACis as standalone agents or in combination with immunotherapeutic approaches.


2006 ◽  
Vol 398 (3) ◽  
pp. 353-360 ◽  
Author(s):  
Jingzhi Li ◽  
Yunkun Wu ◽  
Xinguo Qian ◽  
Bingdong Sha

Heat shock protein (Hsp) 40 facilitates the critical role of Hsp70 in a number of cellular processes such as protein folding, assembly, degradation and translocation in vivo. Hsp40 and Hsp70 stay in close contact to achieve these diverse functions. The conserved C-terminal EEVD motif in Hsp70 has been shown to regulate Hsp40–Hsp70 interaction by an unknown mechanism. Here, we provide a structural basis for this regulation by determining the crystal structure of yeast Hsp40 Sis1 peptide-binding fragment complexed with the Hsp70 Ssa1 C-terminal. The Ssa1 extreme C-terminal eight residues, G634PTVEEVD641, form a β-strand with the domain I of Sis1 peptide-binding fragment. Surprisingly, the Ssa1 C-terminal binds Sis1 at the site where Sis1 interacts with the non-native polypeptides. The negatively charged residues within the EEVD motif in Ssa1 C-terminal form extensive charge–charge interactions with the positively charged residues in Sis1. The structure-based mutagenesis data support the structural observations.


2016 ◽  
Vol 473 (24) ◽  
pp. 4551-4558 ◽  
Author(s):  
Chaim Kahana

Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.


Sign in / Sign up

Export Citation Format

Share Document