scholarly journals Altered diversity and composition of gut microbiota in Wilson's disease

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiangsheng Cai ◽  
Lin Deng ◽  
Xiaogui Ma ◽  
Yusheng Guo ◽  
Zhiting Feng ◽  
...  

AbstractWilson’s disease (WD) is an autosomal recessive inherited disorder of chronic copper toxicosis with high mortality and disability. Recent evidence suggests a correlation between dysbiosis in gut microbiome and multiple diseases such as genetic and metabolic disease. However, the impact of intestinal microbiota polymorphism in WD have not been fully elaborated and need to be explore for seeking some microbiota benefit for WD patients. In this study, the 16S rRNA sequencing was performed on fecal samples from 14 patients with WD and was compared to the results from 16 healthy individuals. The diversity and composition of the gut microbiome in the WD group were significantly lower than those in healthy individuals. The WD group presented unique richness of Gemellaceae, Pseudomonadaceae and Spirochaetaceae at family level, which were hardly detected in healthy controls. The WD group had a markedly lower abundance of Actinobacteria, Firmicutes and Verrucomicrobia, and a higher abundance of Bacteroidetes, Proteobacteria, Cyanobacteria and Fusobacteria than that in healthy individuals. The Firmicutes to Bacteroidetes ratio in the WD group was significantly lower than that of healthy control. In addition, the functional profile of the gut microbiome from WD patients showed a lower abundance of bacterial groups involved in the host immune and metabolism associated systems pathways such as transcription factors and ABC-type transporters, compared to healthy individuals. These results implied dysbiosis of gut microbiota may be influenced by the host metabolic disorders of WD, which may provide a new understanding of the pathogenesis and new possible therapeutic targets for WD.

2020 ◽  
Author(s):  
Xiangsheng Cai ◽  
Lin Deng ◽  
Xiaogui Ma ◽  
Yusheng Guo ◽  
Zhiting Feng ◽  
...  

Abstract Background: Wilson’s disease (WD) is a rare autosomal recessive inherited disorder of chronic copper toxicosis with high mortality and disability. Recent evidence suggests a correlation between dysbiosis in the gut microbiome and metabolic disease. Therefore, the impact of intestinal microbiota polymorphism in WD need to be explore for seeking some microbiota benefit for WD patients. Methods: In this study, the 16S rRNA sequencing was performed on fecal samples from 14 patients with WD and were compared to the results from 16 healthy individuals. The diversity and composition of the gut microbiome in the WD group were significantly lower than those in healthy individuals. Results: The WD group presented unique richness of Gemellaceae , Pseudomonadaceae and Spirochaetaceae at family level in WD group, which were hardly detected in healthy controls The WD group had a markedly lower abundance of Acidobacteria , Firmicutes and Verrucomicrobia , and a higher abundance of Bacteroidet es, Proteobacteria , Cyanobacteria and Fusobacteria than that in healthy individuals. The Firmicutes to Bacteroidetes ratio in the WD group was significantly lower than that of healthy control. The functional profile of the gut microbiome from WD patients showed a lower abundance of bacterial groups involved in the pathways of transcription factors and ABC-type transporters, compared to healthy individuals. The dysbiosis of gut microbiota may be influenced by the host metabolic disorders of WD such as signaling pathway of ABC-type transporters and multiple metabolic modules. Conclusions: This study provides a new understanding of the pathogenesis of WD and new possible therapeutic targets.


2020 ◽  
Author(s):  
Meredith Tavenner ◽  
Sue M McDonnell ◽  
Amy S Biddle

Abstract Background: Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results: Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein. DCM foal microbiomes were more similar to their dams in week five and six than were SFM foals at the same age.Conclusions: This study demonstrates the impact of management on the development of the foal gut microbiome in the first 6 weeks of life. The higher numbers of taxa within and between bacterial groups found in SFM dams and foals suggests more diversity and functional redundancy in their gut microbiomes, which could lend greater stability and resiliency to these communities. The colonization of lactic acid bacteria in the early life of DCM foals suggests enrichment in response to the availability of dams’ feed. Thus, management type is an important driver of gut microbiome establishment on horses, and we may look to semi-feral horses for guidance in defining a healthy gut microbiome for domestic horses.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Mohammad Tauqeer Alam ◽  
Gregory C. A. Amos ◽  
Andrew R. J. Murphy ◽  
Simon Murch ◽  
Elizabeth M. H. Wellington ◽  
...  

Abstract Background Inflammatory bowel disease (IBD), is a debilitating group of chronic diseases including Crohn’s Disease (CD) and ulcerative colitis (UC), which causes inflammation of the gut and affects millions of people worldwide. At different taxonomic levels, the structure of the gut microbiota is significantly altered in IBD patients compared to that of healthy individuals. However, it is unclear how these IBD-affected bacterial groups are related to other common bacteria in the gut, and how they are connected across different disease conditions at the global scale. Results In this study, using faecal samples from patients with IBD, we show through diversity analysis of the microbial community structure based on the 16S rRNA gene that the gut microbiome of IBD patients is less diverse compared to healthy individuals. Furthermore, we have identified which bacterial groups change in abundance in both CD and UC compared to healthy controls. A substantial imbalance was observed across four major bacterial phyla including Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria, which together constitute > 98% of the gut microbiota. Next, we reconstructed a bacterial family co-abundance network based on the correlation of abundance profiles obtained from the public gut microbiome data of > 22,000 samples of faecal and gut biopsies taken from both diseased and healthy individuals. The data was compiled using the EBI metagenomics database (Mitchell et al. in Nucleic Acids Res 46:D726–D735, 2018). By mapping IBD-altered bacterial families to the network, we show that the bacterial families which exhibit an increased abundance in IBD conditions are not well connected to other groups, implying that these families generally do not coexist together with common gut organisms. Whereas, the bacterial families whose abundance is reduced or did not change in IBD conditions compared to healthy conditions are very well connected to other bacterial groups, suggesting they are highly important groups of bacteria in the gut that can coexist with other bacteria across a range of conditions. Conclusions IBD patients exhibited a less diverse gut microbiome compared to healthy individuals. Bacterial groups which changed in IBD patients were found to be groups which do not co-exist well with common commensal gut bacteria, whereas bacterial groups which did not change in patients with IBD were found to commonly co-exist with commensal gut microbiota. This gives a potential insight into the dynamics of the gut microbiota in patients with IBD.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Meredith K. Tavenner ◽  
Sue M. McDonnell ◽  
Amy S. Biddle

Abstract Background Early development of the gut microbiome is an essential part of neonate health in animals. It is unclear whether the acquisition of gut microbes is different between domesticated animals and their wild counterparts. In this study, fecal samples from ten domestic conventionally managed (DCM) Standardbred and ten semi-feral managed (SFM) Shetland-type pony foals and dams were compared using 16S rRNA sequencing to identify differences in the development of the foal hindgut microbiome related to time and management. Results Gut microbiome diversity of dams was lower than foals overall and within groups, and foals from both groups at Week 1 had less diverse gut microbiomes than subsequent weeks. The core microbiomes of SFM dams and foals had more taxa overall, and greater numbers of taxa within species groups when compared to DCM dams and foals. The gut microbiomes of SFM foals demonstrated enhanced diversity of key groups: Verrucomicrobia (RFP12), Ruminococcaceae, Fusobacterium spp., and Bacteroides spp., based on age and management. Lactic acid bacteria Lactobacillus spp. and other Lactobacillaceae genera were enriched only in DCM foals, specifically during their second and third week of life. Predicted microbiome functions estimated computationally suggested that SFM foals had higher mean sequence counts for taxa contributing to the digestion of lipids, simple and complex carbohydrates, and protein. DCM foal microbiomes were more similar to their dams in week five and six than were SFM foals at the same age. Conclusions This study demonstrates the impact of management on the development of the foal gut microbiome in the first 6 weeks of life. The higher numbers of taxa within and between bacterial groups found in SFM dams and foals suggests more diversity and functional redundancy in their gut microbiomes, which could lend greater stability and resiliency to these communities. The colonization of lactic acid bacteria in the early life of DCM foals suggests enrichment in response to the availability of dams’ feed. Thus, management type is an important driver of gut microbiome establishment on horses, and we may look to semi-feral horses for guidance in defining a healthy gut microbiome for domestic horses.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Safa Salim ◽  
Ayesha Banu ◽  
Amira Alwa ◽  
Swetha B. M. Gowda ◽  
Farhan Mohammad

AbstractThe idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Maike Willers ◽  
Dorothee Viemann

Abstract Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.


2019 ◽  
Vol 7 (10) ◽  
pp. 456 ◽  
Author(s):  
Kaliyan Barathikannan ◽  
Ramachandran Chelliah ◽  
Momna Rubab ◽  
Eric Banan-Mwine Daliri ◽  
Fazle Elahi ◽  
...  

The growing prevalence of obesity has become an important problem worldwide as obesity has several health risks. Notably, factors such as excessive food consumption, a sedentary way of life, high sugar consumption, a fat-rich diet, and a certain genetic profile may lead to obesity. The present review brings together recent advances regarding the significance of interventions involving intestinal gut bacteria and host metabolic phenotypes. We assess important biological molecular mechanisms underlying the impact of gut microbiota on hosts including bile salt metabolism, short-chain fatty acids, and metabolic endotoxemia. Some previous studies have shown a link between microbiota and obesity, and associated disease reports have been documented. Thus, this review focuses on obesity and gut microbiota interactions and further develops the mechanism of the gut microbiome approach related to human obesity. Specifically, we highlight several alternative diet treatments including dietary changes and supplementation with probiotics. The future direction or comparative significance of fecal transplantation, synbiotics, and metabolomics as an approach to the modulation of intestinal microbes is also discussed.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Helen T. Groves ◽  
Sophie L. Higham ◽  
Miriam F. Moffatt ◽  
Michael J. Cox ◽  
John S. Tregoning

ABSTRACT Respiratory viral infections are extremely common, but their impacts on the composition and function of the gut microbiota are poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here, we show that weight loss during respiratory syncytial virus (RSV) or influenza virus infection was due to decreased food consumption, and that the fasting of mice altered gut microbiota composition independently of infection. While the acute phase tumor necrosis factor alpha (TNF-α) response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, the depletion of CD8+ cells increased food intake and prevented weight loss, resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the fecal gut metabolome, with a significant shift in lipid metabolism. Sphingolipids, polyunsaturated fatty acids (PUFAs), and the short-chain fatty acid (SCFA) valerate were all increased in abundance in the fecal metabolome following RSV infection. Whether this and the impact of infection-induced anorexia on the gut microbiota are part of a protective anti-inflammatory response during respiratory viral infections remains to be determined. IMPORTANCE The gut microbiota has an important role in health and disease: gut bacteria can generate metabolites that alter the function of immune cells systemically. Understanding the factors that can lead to changes in the gut microbiome may help to inform therapeutic interventions. This is the first study to systematically dissect the pathway of events from viral lung infection to changes in gut microbiota. We show that the cellular immune response to viral lung infection induces inappetence, which in turn alters the gut microbiome and metabolome. Strikingly, there was an increase in lipids that have been associated with the resolution of disease. This opens up new paths of investigation: first, what is the (presumably secreted) factor made by the T cells that can induce inappetence? Second, is inappetence an adaptation that accelerates recovery from infection, and if so, does the microbiome play a role in this?


2017 ◽  
Vol 84 (5) ◽  
Author(s):  
M. Andrea Azcarate-Peril ◽  
Natasha Butz ◽  
Maria Belen Cadenas ◽  
Matthew Koci ◽  
Anne Ballou ◽  
...  

ABSTRACT Salmonella is estimated to cause one million foodborne illnesses in the United States every year. Salmonella -contaminated poultry products are one of the major sources of salmonellosis. Given the critical role of the gut microbiota in Salmonella transmission, a manipulation of the chicken intestinal microenvironment could prevent animal colonization by the pathogen. In Salmonella , the global regulator gene fnr ( f umarate n itrate r eduction) regulates anaerobic metabolism and is essential for adapting to the gut environment. This study tested the hypothesis that an attenuated Fnr mutant of Salmonella enterica serovar Typhimurium (attST) or prebiotic galacto-oligosaccharides (GOS) could improve resistance to wild-type Salmonella via modifications to the structure of the chicken gut microbiome. Intestinal samples from a total of 273 animals were collected weekly for 9 weeks to evaluate the impact of attST or prebiotic supplementation on microbial species of the cecum, duodenum, jejunum, and ileum. We next analyzed changes to the gut microbiome induced by challenging the animals with a wild-type Salmonella serovar 4,[5],12:r:− (Nal r ) strain and determined the clearance rate of the virulent strain in the treated and control groups. Both GOS and the attenuated Salmonella strain modified the gut microbiome but elicited alterations of different taxonomic groups. The attST produced significant increases of Alistipes and undefined Lactobacillus , while GOS increased Christensenellaceae and Lactobacillus reuteri . The microbiome structural changes induced by both treatments resulted in a faster clearance after a Salmonella challenge. IMPORTANCE With an average annual incidence of 13.1 cases/100,000 individuals, salmonellosis has been deemed a nationally notifiable condition in the United States by the Centers for Disease Control and Prevention (CDC). Earlier studies demonstrated that Salmonella is transmitted by a subset of animals (supershedders). The supershedder phenotype can be induced by antibiotics, ascertaining an essential role for the gut microbiota in Salmonella transmission. Consequently, modulation of the gut microbiota and modification of the intestinal microenvironment could assist in preventing animal colonization by the pathogen. Our study demonstrated that a manipulation of the chicken gut microbiota by the administration of an attenuated Salmonella strain or prebiotic galacto-oligosaccharides (GOS) can promote resistance to Salmonella colonization via increases of beneficial microorganisms that translate into a less hospitable gut microenvironment.


This article discusses various aspects of dementing processes in patients with Wilson’s disease (WD) and multiple sclerosis (MS), followed by a discussion of current pathogenetic treatment methods for these patients. A comprehensive clinical and laboratory study showed that the pathogenesis and staged development of the dementing process in patients with WD and MS largely coincides with those in patients with Alzheimer's disease and depends on three groups of factors: genetic predisposition, natural (biological) aging, and endo and exogenous pathogenic factors effects on the brain. Therefore, on the basis of the data presented by us, as well as literature data, it allows us to state that dementia is an organic pathophysiological syndrome of destruction of the critical mass of structural-functional blocks and systems of cognitive mechanisms of the brain. Each individual has his own, genetically determined, critical mass of cognitive mechanisms. Like any false system, this one is ultimately subject to both natural (slow) decay and pathological (accelerated) decay due to the death of neurons both in the type of apoptosis and in the type of necrosis. Thus, in patients with WD and MS, the pathogenetic process always involves structures sooner or later that ensure the functioning of the cognitive functions of the brain and lead to the development of their defects, therefore, therapy should be prescribed for the treatment of these patients. Dementia should be treated at its early stage, at the stage of cognitive impairment (CI). The general principles of managing patients with CI are the determination of the etiopathogenetic cause underlying the development of cognitive impairment, the reduction in the degree and prevention of the progression of cognitive deficit and the impact, if possible, on risk factors. Also, at all stages of cognitive deficiency, treatment of concomitant somatic diseases and correction of the emotional state are relevant. Therefore, timely prescribed comprehensive, pathogenetically substantiated personified therapy helps prevent irreversible consequences and improves the quality of life of patients.


Sign in / Sign up

Export Citation Format

Share Document