scholarly journals 2D materials coated on etched optical fibers as humidity sensor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erfan Owji ◽  
Hossein Mokhtari ◽  
Fatemeh Ostovari ◽  
Behnam Darazereshki ◽  
Nazanin Shakiba

AbstractIn this investigation, etched-fibers are coated by 2D layers such as Molybdenum disulfide (MoS2), Molybdenum diselenide (MoSe2) and composition of graphene and graphene oxide (G/GO) to modify humidity sensing. The relative differentiation of attenuations (RDA) in presence of relative humidity (RH) is measured by Optical Loss Test Set at two standard-wavelengths-telecommunication (1310 nm and 1550 nm). Results show that the etched single-mode fiber (ESMF) coated with G/GO has relatively high and one by one function for RDA versus RH (more than 30%). Also, its sensitivity and variance are reasonable. The MoSe2 based sensor is applicable at humidity below 30% because of higher RDA. However, it is not useful at humidity more than 30% due to the absence of one by one function for RDA versus RH. Besides, ESMF coated with MoS2 has indistinctive behavior and is not useful as a humidity sensor.

Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 521 ◽  
Author(s):  
Yuan ◽  
Qian ◽  
Liu ◽  
Wang ◽  
Yu

Here we report on a miniaturized optical interferometer in one fiber based on two mismatched nodes. The all-fiber structure shows stable performance of temperature and humidity sensing. For temperature sensing in large ranges, from 40 to 100 °C, the sensor has a sensitivity of 0.24 dB/°C, and the adjusted R-squared value of fitting result reaches 0.99461 which shows a reliable sensing result. With carbon nanotubes coating the surface of the fiber, the temperature sensitivity is enhanced from 0.24561 to 1.65282 dB/°C in a small region, and the performance of humidity sensing becomes more linear and applicable. The adjusted R-squared value of the linear fitting line for humidity sensing shows a dramatic increase from 0.71731 to 0.92278 after carbon nanotube coating, and the humidity sensitivity presents 0.02571 nm/%RH.


2021 ◽  
Author(s):  
F. Ostovari ◽  
E. Owji ◽  
H. Mokhtari Iran

Abstract In this research, optical humidity sensors based on etched-optical fibers coated with graphene Oxide (GO), silica gel (Sg) and a silica gel modified with GO (GSg) was studied. Their humidity sensing behavior was investigated by variation of relative differentiation of attenuation (RDA) in the presence of relative humidity (RH). As the results showed, etched fibers coated with Sg and GSg are highly capable of humidity sensing. However, a Sg- coated sample is not useful as humidity sensor related to sample coated by GSg because its RDA lacks a one-to-one correspondence with RH. As it was also found, the sensitivity of a GSg-coated sample is higher when the RH is below 40% and its repeatability is considerable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Perez-Herrera ◽  
M. Bravo ◽  
P. Roldan-Varona ◽  
D. Leandro ◽  
L. Rodriguez-Cobo ◽  
...  

AbstractIn this work, an experimental analysis of the performance of different types of quasi-randomly distributed reflectors inscribed into a single-mode fiber as a sensing mirror is presented. These artificially-controlled backscattering fiber reflectors are used in short linear cavity fiber lasers. In particular, laser emission and sensor application features are analyzed when employing optical tapered fibers, micro-drilled optical fibers and 50 μm-waist or 100 μm-waist micro-drilled tapered fibers (MDTF). Single-wavelength laser with an output power level of about 8.2 dBm and an optical signal-to-noise ratio of 45 dB were measured when employing a 50 μm-waist micro-drilled tapered optical fiber. The achieved temperature sensitivities were similar to those of FBGs; however, the strain sensitivity improved more than one order of magnitude in comparison with FBG sensors, attaining slope sensitivities as good as 18.1 pm/με when using a 50 μm-waist MDTF as distributed reflector.


2020 ◽  
Vol 8 (5) ◽  
pp. 4286-4289

The requirement of the modern application is to transmit wide bandwidth of signal with the low latency. The optical fibers provide wide transmission bandwidth along with very little delay as well as choice on choosing transmission medium for high data rate. However, Stimulated Brillouin Scattering (SBS) is a nonlinear optical effect that restricts power level into a fiber to few milliwatts. It degrades the Q-factor and consequently the bit error rate of an optical fiber link. For suppression of SBS, various approaches have been used previously such as PSK, ASK, FSK, CSRZ-DQPSK etc. Among all the previous techniques, CSRZ-DQPSK transmitter is considered as the most efficient one for suppression of SBS. However, it consists of some drawbacks such as low spectrum efficiency, susceptibility to phase variation and short communication range, due to which requirement arises of upgrading the previous work. Therefore, in the proposed work (i.e. CSRZ-DP-QPSK), DP-QPSK scheme is used which makes the system more efficient as it has high spectrum efficiency and improved sensitivity. Also, the communication range is elongated in present work. The performance evaluation of CSRZ-DP-QPSK approach has been performed in terms of Q-Factor, BER, and threshold. Also, the comparative analysis of the proposed approach with conventional approaches has been performed and from the obtained results it has been demonstrated that proposed work is more efficient than conventional one as it has better SBS tolerance and improved BER.


2020 ◽  
Vol 1002 ◽  
pp. 290-299
Author(s):  
Raghad Hani ◽  
Bushra R. Mahdi ◽  
Ayad Z. Mohammad

Zinc is one of the important material in human blood because of its effect in defensive system work for properly and it plays an important role in growth, wound healing Medically zinc concentration effect directly in skin health so it's important to make a sensor for discover zinc and its concentration change in human blood for each of male and female. Optical fibers are used as a sensor for detecting zinc and its concentration by transmitted laser signal through the optical fiber by using different types (single mode fiber SMF, photonic crystal fiber PCF) by studying the results of output laser the detection can be seen for zinc concentration change, the design of small PCF which the same LMA_10 but smaller in its radius of core and cladding even the distance between cores. The smallest PCF size has the best detection for all zinc concentration change in blood all that was done by comsol Multiphysics 5.4 simulation program


2020 ◽  
Vol 12 (2) ◽  
pp. 49
Author(s):  
Zbigniew Opilski ◽  
Marcin Procek ◽  
Salvador Aznar-Cervantes ◽  
Jose Cenis ◽  
Xavier Munoz

The article presents an inexpensive and simple method of fiber optic interference relative humidity (RH) sensors based on silk fibroin (SF) films. The sensors were made on standard multimode telecommunications optical fibers using dip-coating method and examined using broadband light sources. The measuring stand at which the basic sensor parameters were measured and the measured parameters were presented. Full Text: PDF ReferencesY.-G. Han, "Relative Humidity Sensors Based on Microfiber Knot Resonators—A Review", Sensors, 19(23), 5196 (2019) CrossRef L.D. Koh, Y. Cheng, C. P. Teng, Y. W. Khin, X. J. Loh, S. Y. Tee, et al., "Structures, mechanical properties and applications of silk fibroin materials", Prog. Polim. Sci. 46, 86-110 (2015) CrossRef H. Tao, D. L. Kaplan, F. G. Omenetto, "Silk Materials – A Road to Sustainable High Technology", Adv. Mater., 24, 2824-2837 (2012), CrossRef Q. Li, N. Qi, Y. Peng, Y. Zhang, L. Shi, X. Zhang, et al., "Sub-micron silk fibroin film with high humidity sensibility through color changing", RSC Adv. 7(29), 17889-17897 (2017) CrossRef S.K. Hwan, H.C. Sung, B. Roy, S. Kim, Y.H. Ahn, "Humidity sensing using THz metamaterial with silk protein fibroin", Opt. Express 26(26), 33575-33581 (2018) CrossRef M. Procek, Z. Opilski, A. M. Maqueda, X. M. Berbel, S. D. Aznar-Cervantes, J. L. Cenis, C. D. Horna, "Silk fibroin thin films for optical humidity sensing", Proc. SPIE , 11204, 0277-786X, (2019). CrossRef Y. Luo, Y. Pei, X. Feng, B. Lu, L. Wang, "Silk fibroin based transparent and wearable humidity sensor for ultra-sensitive respiration monitoring", Mater. Lett., 260, 126945 (2020) CrossRef E. Maciak, "Low-Coherence Interferometric Fiber Optic Sensor for Humidity Monitoring Based on Nafion® Thin Film†", Sensors 19(3), 629 (2019) CrossRef


2020 ◽  
Vol 238 ◽  
pp. 11013
Author(s):  
Pavel Cherpak ◽  
Renat Shaidullin ◽  
Oleg Ryabushkin

We demonstrate a novel approach to the determination of optical loss coefficients in metal-coated fibers in a 0.4-1.9 μm wavelength range. It is based on measuring the change of temperature-dependent electrical resistance of the metal coating caused by laser radiation transmitted through the fiber. A number of single-mode and multimode metallized fibers were investigated using several laser sources operating in visible and near infrared ranges. The spectral dependencies of optical losses of copper-coated fibers were experimentally obtained. The region that corresponds to the minimum optical losses is located near 1 μm wavelength. The increase of radiation losses in 1.5-1.9 μm region is much steeper compared to polymer-coated fibers.


2021 ◽  
Vol 91 (6) ◽  
pp. 1021
Author(s):  
В.М. Епихин ◽  
А.В. Рябинин

A modulator-frequency shifter with single-mode optical fibers for a radiation wavelength of 1064 nm has been developed and manufactured. The light beam was focused in the center of the sound column. Modulator switching time ≃ 18 ns. Operating mode: pulse, continuous. Total optical loss at center frequency: -3.2 dB. An expression for the frequency band of reception of the modulator is obtained. The estimates are in good agreement with the experimental data ≃ 40 MHz. It is shown that the use of a scheme with a focused beam makes it possible to implement a modulator with a minimum switching time ≃ (2-3) ns and a receiving frequency band ≃ (200-300) MHz.


Sensors ◽  
2019 ◽  
Vol 19 (20) ◽  
pp. 4512 ◽  
Author(s):  
Natanael Cuando-Espitia ◽  
Juan Bernal-Martínez ◽  
Miguel Torres-Cisneros ◽  
Daniel May-Arrioja

The integration of carbon nanotubes (CNTs) into optical fibers allows the application of their unique properties in robust and versatile devices. Here, we present a laser-induced technique to obtain the deposition of CNTs onto the fiber optics tips of multimode interference (MMI) devices. An MMI device is constructed by splicing a section of no-core fiber (NCF) to a single-mode fiber (SMF). The tip of the MMI device is immersed into a liquid solution of CNTs and laser light is launched into the MMI device. CNTs solutions using water and methanol as solvents were tested. In addition, the use of a polymer dispersant polyvinylpyrrolidone (PVP) in the CNTs solutions was also studied. We found that the laser-induced deposition of CNTs performed in water-based solutions generates non-uniform deposits. On the other hand, the laser-induced deposition performed with methanol solutions generates uniform deposits over the fiber tip when no PVP is used and deposition at the center of the fiber when PVP is present in the CNTs solution. The results show the crucial role of the solvent on the spatial features of the laser-induced deposition process. Finally, we register and study the reflection spectra of the as-fabricated CNTs deposited MMI devices.


Sign in / Sign up

Export Citation Format

Share Document