scholarly journals Basal and IL-1β enhanced chondrocyte chemotactic activity on monocytes are co-dependent on both IKKα and IKKβ NF-κB activating kinases

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eleonora Olivotto ◽  
Manuela Minguzzi ◽  
Stefania D’Adamo ◽  
Annalisa Astolfi ◽  
Spartaco Santi ◽  
...  

AbstractIKKα and IKKβ are essential kinases for activating NF-κB transcription factors that regulate cellular differentiation and inflammation. By virtue of their small size, chemokines support the crosstalk between cartilage and other joint compartments and contribute to immune cell chemotaxis in osteoarthritis (OA). Here we employed shRNA retroviruses to stably and efficiently ablate the expression of each IKK in primary OA chondrocytes to determine their individual contributions for monocyte chemotaxis in response to chondrocyte conditioned media. Both IKKα and IKKβ KDs blunted both the monocyte chemotactic potential and the protein levels of CCL2/MCP-1, the chemokine with the highest concentration and the strongest association with monocyte chemotaxis. These findings were mirrored by gene expression analysis indicating that the lowest levels of CCL2/MCP-1 and other monocyte-active chemokines were in IKKαKD cells under both basal and IL-1β stimulated conditions. We find that in their response to IL-1β stimulation IKKαKD primary OA chondrocytes have reduced levels of phosphorylated NFkappaB p65pSer536 and H3pSer10. Confocal microscopy analysis revealed co-localized p65 and H3pSer10 nuclear signals in agreement with our findings that IKKαKD effectively blunts their basal level and IL-1β dependent increases. Our results suggest that IKKα could be a novel OA disease target.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ke Zhang ◽  
Zhuoying Li ◽  
Yunyang Lu ◽  
Linyi Xiang ◽  
Jiadong Sun ◽  
...  

Abstract Background The Wnt planar cell polarity (PCP) pathway is implicated in osteoarthritis (OA) both in animals and in humans. Van Gogh-like 2 (Vangl2) is a key PCP protein that is required for the orientation and alignment of chondrocytes in the growth plate. However, its functional roles in OA still remain undefined. Here, we explored the effects of Vangl2 on OA chondrocyte in vitro and further elucidated the molecular mechanism of silencing Vangl2 in Wnt5a-overexpressing OA chondrocytes. Methods Chondrocytes were treated with IL-1β (10 ng/mL) to simulate the inflammatory microenvironment of OA. The expression levels of Vangl2, Wnt5a, MMPs, and related proinflammatory cytokines were measured by RT-qPCR. Small interfering RNA (siRNA) of Vangl2 and the plasmid targeting Wnt5a were constructed and transfected into ATDC5 cells. Then, the functional roles of silencing Vangl2 in the OA chondrocytes were investigated by Western blotting, RT-qPCR, and immunocytochemistry (ICC). Transfected OA chondrocytes were subjected to Western blotting to analyze the relationship between Vangl2 and related signaling pathways. Results IL-1β induced the production of Vangl2, Wnt5a, and MMPs in a time-dependent manner and the significantly increased expression of Vangl2. Vangl2 silencing effectively suppressed the expression of MMP3, MMP9, MMP13, and IL-6 at both gene and protein levels and upregulated the expression of type II collagen and aggrecan. Moreover, knockdown of Vangl2 inhibited the phosphorylation of MAPK signaling molecules (P38, ERK, and JNK) and P65 in Wnt5a-overexpressing OA chondrocytes. Conclusions For the first time, we demonstrate that Vangl2 is involved in the OA process. Vangl2 silencing can notably alleviate OA progression in vitro by inhibiting the expression of MMPs and increasing the formation of the cartilage matrix and can inhibit the proinflammatory effects of Wnt5a via MAPK and NF-κB pathway. This study provides new insight into the mechanism of cartilage inflammation.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Wei Zheng ◽  
Guanhua Hou ◽  
Yong Li

Abstract Background Circular RNA (circRNA) has been shown to be associated with osteoarthritis (OA) progression. Circ_0116061 has been found to be highly expressed in OA cartilage tissues, but its role and mechanism in OA progression remain unclear. Methods Expression levels of circ_0116061, microRNA (miR)-200b-5p, and Smad ubiquitin regulatory factor 2 (SMURF2) were detected using quantitative real-time PCR. The proliferation and apoptosis of cells were measured using cell counting kit 8 (CCK8) assay, colony formation assay, and flow cytometry. Furthermore, the protein levels of proliferation-related marker, apoptosis-related markers, inflammatory factors, and SMURF2 were tested using western blot (WB) analysis. In addition, the interaction between miR-200b-3p and circ_0116061 or SMURF2 was examined using dual-luciferase reporter assay and biotin-labeled RNA pull-down assay. Results Circ_0116061 and SMURF2 were highly expressed, and miR-200b-3p was lowly expressed in OA cartilage tissues. Knockdown of circ_0116061 could promote the proliferation and inhibit the apoptosis and inflammation of OA chondrocytes. MiR-200b-3p could be sponged by circ_0116061, and its inhibitor could reverse the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes. SMURF2 was a target of miR-200b-3p, and its expression was positively regulated by circ_0116061. Silencing of SMURF2 also could enhance the proliferation and suppress the apoptosis and inflammation of OA chondrocytes. Furthermore, the regulation of circ_0116061 silencing on the biological functions of OA chondrocytes also could be reversed by SMURF2 overexpression. Conclusion Our data showed that circ_0116061 might regulate the miR-200b-3p/SMURF2 axis to promote the progression of OA.


2004 ◽  
Vol 66 (5) ◽  
pp. 770-775 ◽  
Author(s):  
Laura Redwine ◽  
Paul J. Mills ◽  
Merna Sada ◽  
Joel Dimsdale ◽  
Thomas Patterson ◽  
...  

2007 ◽  
Vol 9 (4) ◽  
pp. 924-929 ◽  
Author(s):  
Silvia Rossi Paccani ◽  
Fiorella Tonello ◽  
Laura Patrussi ◽  
Nagaja Capitani ◽  
Morena Simonato ◽  
...  

2020 ◽  
Author(s):  
Vikramjeet Singh ◽  
Alexander Beer ◽  
Andreas Kraus ◽  
Xiaoni Zhang ◽  
Jinhua Xue ◽  
...  

AbstractBackgroundThe newly emerged severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused a worldwide pandemic of human respiratory disease. Angiotensin-converting enzyme (ACE) 2 is the key receptor on lung epithelial cells to facilitate initial binding and infection of SARS-CoV-2. The binding to ACE2 is mediated via the spike glycoprotein present on the virus surface. Recent clinical data have demonstrated that patients suffering from stroke are particularly susceptible to severe courses of SARS-CoV-2 infection, thus forming a defined risk group. However, a mechanistic explanation for this finding is lacking. Sterile tissue injuries including stroke induce lymphocytopenia and systemic inflammation that might modulate the expression levels of surface proteins in distant organs. Whether systemic inflammation following stroke can specifically modulate ACE2 expression in the lung has not been investigated.MethodsMice were subjected to transient middle cerebral artery occlusion (MCAO) for 45 min and sacrificed after 24 h and 72 h for analysis of brain and lung tissues. Gene expression and protein levels of ACE2, ACE, IL-6 and IL1β were measured by quantitative PCR and Western blot, respectively. Immune cell populations in lymphoid organs were analyzed by flow cytometry.ResultsStrikingly, 24 h after stroke, we observed a substantial increase in the expression of ACE2 both on the transcriptional and protein levels in the lungs of MCAO mice compared to sham-operated mice. This increased expression persisted until day 3 after stroke. In addition, MCAO increased the expression of inflammatory cytokines IL-6 and IL-1β in the lungs. Higher gene expression of cytokines IL-6 and IL-1β was found in ischemic brain hemispheres and a reduced number of T-lymphocytes were present in the blood and spleen as an indicator of sterile tissue injury-induced immunosuppression.ConclusionsWe demonstrate significantly augmented ACE2 levels and inflammation in murine lungs after experimental stroke. These pre-clinical findings might explain the clinical observation that patients with pre-existing stroke represent a high-risk group for the development of severe SARS-CoV-2 infections. Our studies call for further investigations into the underlying signaling mechanisms and possible therapeutic interventions.HighlightsBrain tissue injury increases ACE2 levels in the lungsBrain injury induces pro-inflammatory cytokine expression in the lungsBrain injury causes parenchymal inflammation and systemic lymphopenia


2015 ◽  
pp. e506-e512 ◽  
Author(s):  
NIP Pini ◽  
DANL Lima ◽  
GMB Ambrosano ◽  
WJ da Silva ◽  
FHB Aguiar ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
Author(s):  
Thinh T. Nguyen ◽  
Hyun-Sung Lee ◽  
Bryan M. Burt ◽  
Jia Wu ◽  
Jianjun Zhang ◽  
...  

Abstract Background Lung adenocarcinoma, the most common type of lung cancer, has a high level of morphologic heterogeneity and is composed of tumor cells of multiple histological subtypes. It has been reported that immune cell infiltration significantly impacts clinical outcomes of patients with lung adenocarcinoma. However, it is unclear whether histologic subtyping can reflect the tumor immune microenvironment, and whether histologic subtyping can be applied for therapeutic stratification of the current standard of care. Methods We inferred immune cell infiltration levels using a histological subtype-specific gene expression dataset. From differential gene expression analysis between different histological subtypes, we developed two gene signatures to computationally determine the relative abundance of lepidic and solid components (denoted as the L-score and S-score, respectively) in lung adenocarcinoma samples. These signatures enabled us to investigate the relationship between histological composition and clinical outcomes in lung adenocarcinoma using previously published datasets. Results We found dramatic immunological differences among histological subtypes. Differential gene expression analysis showed that the lepidic and solid subtypes could be differentiated based on their gene expression patterns while the other subtypes shared similar gene expression patterns. Our results indicated that higher L-scores were associated with prolonged survival, and higher S-scores were associated with shortened survival. L-scores and S-scores were also correlated with global genomic features such as tumor mutation burdens and driver genomic events. Interestingly, we observed significantly decreased L-scores and increased S-scores in lung adenocarcinoma samples with EGFR gene amplification but not in samples with EGFR gene mutations. In lung cancer cell lines, we observed significant correlations between L-scores and cell sensitivity to a number of targeted drugs including EGFR inhibitors. Moreover, lung cancer patients with higher L-scores were more likely to benefit from immune checkpoint blockade therapy. Conclusions Our findings provided further insights into evaluating histology composition in lung adenocarcinoma. The established signatures reflected that lepidic and solid subtypes in lung adenocarcinoma would be associated with prognosis, genomic features, and responses to targeted therapy and immunotherapy. The signatures therefore suggested potential clinical translation in predicting patient survival and treatment responses. In addition, our framework can be applied to other types of cancer with heterogeneous histological subtypes.


2014 ◽  
Vol 44 (6) ◽  
pp. 1608-1615 ◽  
Author(s):  
Andreas Hector ◽  
Carolin Kröner ◽  
Melanie Carevic ◽  
Martina Bakele ◽  
Nikolaus Rieber ◽  
...  

Cystic fibrosis (CF) lung disease is characterised by chronic Pseudomonas aeruginosa infection and leukocyte infiltration. Chemokines recruit leukocytes to sites of infection. Gene expression analysis identified the chemokine CCL18 as upregulated in CF leukocytes. We hypothesised that CCL18 characterises infection and inflammation in patients with CF lung disease.Therefore, we quantified CCL18 protein levels in the serum and airway fluids of CF patients and healthy controls, and studied CCL18 protein production by airway cells ex vivo.These studies demonstrated that CCL18 levels were increased in the serum and airway fluids from CF patients compared with healthy controls. Within CF patients, CCL18 levels were increased in P. aeruginosa-infected CF patients. CCL18 levels in the airways, but not in serum, correlated with severity of pulmonary obstruction in CF. Airway cells isolated from P. aeruginosa-infected CF patients produced significantly higher amounts of CCL18 protein compared with airway cells from CF patients without P. aeruginosa infection or healthy controls.Collectively, these studies show that CCL18 levels characterise chronic P. aeruginosa infection and pulmonary obstruction in patients with CF. CCL18 may, thus, serve as a potential biomarker and therapeutic target in CF lung disease.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Hirokazu Enomoto ◽  
Shinji Makino ◽  
Nishant Mittal ◽  
Akinori Kimura ◽  
Takuro Arimura ◽  
...  

Introduction: Despite the recent advance of genetic studies, genetic causes of hereditary dilated cardiomyopathy (DCM) are still unknown in most cases. Heat shock protein 60 (Hsp60) is a well-known chaperonin, responsible for correct folding and transportation of cytoplasmic protein to mitochondria. This study is aimed to investigate whether dysfunction of Hsp60 leads to cardiomyopathy in a fish model. Methods: We previously developed a zebrafish mutant, nbl, which has a missense mutation in hsp60, leading to the loss of function. To evaluate the phenotype of cardiomyopathy in nbl, we performed RT-PCR, western blot and immunohistochemistry of the hearts. Results: Homozygous nbl embryos showed lower survival rate (65%), compared to 81% in wild-type (WT) embryos, when subjected to 33°C (stress condition). We observed pericardial edema in 92% of nbl homozygous mutants. Also, nbl homozygotes showed sudden death at around 8 months post fertilization (mpf), when grown in non-stress condition. At 8 mpf, nbl mutants showed dilated heart and high expression of reactive oxygen species (ROS). Both mRNA and protein levels of Hsp60 were similar in nbl homozygotes and WT, at 3 mpf but, much higher expression of Hsp60 in nbl homozygotes was observed at 6 mpf, beginning of death of nbl homozygous mutants. Electron microscopy analysis showed dark mitochondria, disrupted sarcomeric structure and higher number of autophagosomes in nbl homozygote hearts at 8 mpf. We, then, analyzed autophagy related genes and found that atg5, atg3 and gabarap mRNAs were increased in nbl homozygotes, suggesting the increased autophagy might underlie the pathogenesis of DCM. Furthermore, analysis of genetically unrelated patients with familial DCM, who had no mutations in the known DCM-causing genes, identified an hsp60 mutation in one DCM family in which two of four mutation prone individuals died suddenly. Over expression of nbl mutation or DCM-associated hsp60 mutation, but not normal hsp60, increased autophagosomes in Hela cells carrying GFP-LC3. Conclusions: Functional loss of Hsp60 increased oxidative stress in the heart, which leads to increased autophagy and confer the susceptibility to cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document