scholarly journals Sperm preparedness and adaptation to osmotic and pH stressors relate to functional competence of sperm in Bos taurus

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maharajan Lavanya ◽  
Santhanahalli Siddalingappa Archana ◽  
Divakar Swathi ◽  
Laxman Ramya ◽  
Arunachalam Arangasamy ◽  
...  

AbstractThe adaptive ability of sperm in the female reproductive tract micromilieu signifies the successful fertilization process. The study aimed to analyze the preparedness of sperm to the prevailing osmotic and pH stressors in the female reproductive tract. Fresh bovine sperm were incubated in 290 (isosmotic-control), 355 (hyperosmotic-uterus and oviduct), and 420 (hyperosmotic-control) mOsm/kg and each with pH of 6.8 (uterus) and 7.4 (oviduct). During incubation, the changes in sperm functional attributes were studied. Sperm kinematics and head area decreased significantly (p < 0.05) immediately upon exposure to hyperosmotic stress at both pH. Proportion of sperm capacitated (%) in 355 mOsm/kg at 1 and 2 h of incubation were significantly (p < 0.05) higher than those in 290 mOsm media. The magnitude and duration of recovery of sperm progressive motility in 355 mOsm with pH 7.4 was correlated with the ejaculate rejection rate (R2 = 0.7). Using this information, the bulls were divided into good (n = 5) and poor (n = 5) osmo-adapters. The osmo-responsive genes such as NFAT5, HSP90AB1, SLC9C1, ADAM1B and GAPDH were upregulated (p < 0.05) in the sperm of good osmo-adapters. The study suggests that sperm are prepared for the osmotic and pH challenges in the female reproductive tract and the osmoadaptive ability is associated with ejaculate quality in bulls.

2013 ◽  
Vol 25 (1) ◽  
pp. 183
Author(s):  
M. Ahmad ◽  
N. Ahmad ◽  
A. Riaz ◽  
M. Anzar

Extent and timing of alterations in structures and functions of sperm after its placement in the female reproductive tract are important for successful fertilization. To our knowledge, the few reports are available on the kinetics of alterations in bovine sperm structures and functions during pathway to their death. Therefore, the present study was conducted to determine the changes in motility, acrosome and plasma membrane asymmetry in fresh and frozen–thawed semen during incubation at 37°C over the period of 24 h. Semen was collected from 3 breeding beef bulls, pooled, and considered as one replicate (total replicates = 5). Each pooled semen sample was diluted in Tris-citric acid egg yolk glycerol extender (pH 6.8), cooled to +4°C over 90 min, and then cryopreserved by a programmable cell freezer. Fresh (pooled semen) and frozen–thawed semen were incubated at 37°C for 24 h. Each semen sample was evaluated for sperm motility with computer-assisted semen analysis and acrosomal integrity and plasma membrane asymmetry using fluorescein isothiocyanate-peanut agglutinin/propidium iodide and Annexin V/propidium iodide assays, respectively, at 0, 2, 4, 6, 12, and 24 h of incubation at 37°C, with a flow cytometer. Statistical analysis was conducted using PROC MIXED model in statistical analysis system as 2 (semen types) × 6 (times) factorial model, using time as repeated measure. Progressive motility was higher (P < 0.05) in fresh than in frozen–thawed semen until 6 h. Progressive motility declined (P < 0.05) below the threshold level (i.e. 30%) much later (12 h) in fresh as compared with frozen–thawed semen (2 h). However, acrosomal integrity and plasma membrane asymmetry deteriorated (P < 0.05) below threshold at the same time interval (2 h) in both fresh and frozen–thawed semen. Viable sperm (AN–/PI–) remained higher (P < 0.05) during the first 6 h in fresh than in frozen–thawed semen and declined (P < 0.05) below the threshold at 12 h in fresh and at 6 h in frozen–thawed semen. In fresh semen, the necrotic sperm (AN–/PI+) population increased (P < 0.05) over time and reached maximum (97%) at 24 h. In frozen–thawed semen, a mixed population of late apoptotic (53%) and necrotic (34%) sperm was found at 24 h. In conclusion, the alterations in sperm motility, acrosomes, plasma membrane integrity, and asymmetry were slower in fresh than in frozen–thawed semen. Fresh sperm followed necrosis and frozen–thawed sperm underwent necrosis and apoptosis-like pathways, respectively. This study was supported by the Canadian Commonwealth Scholarship Program by the Canadian Bureau for International Education (CBIE), and Agriculture and Agri-Food Canada.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 362-363
Author(s):  
Lauren Clark ◽  
Jolena N Waddell ◽  
David Roper ◽  
William B Smith ◽  
Cheyenne L Runyan

Abstract Spermatozoon motility is an important factor in successful artificial reproductive technologies. Successful reproduction requires properly developed spermatozoa with adequate forward, progressive motility that allows for transport through the female reproductive tract. Motility is driven by production of ATP; however, cryopreservation is known to have damaging effects on spermatozoa. Mitochondria utilize oxidative phosphorylation to synthesize ATP through an electrochemical proton motive force that is composed primarily of mitochondrial membrane potential (Δψm). The mitochondrial membrane potential can be measured using a fluorescent, carbocyanine JC-1 dye (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimi-dazolylcarbocyanine iodide). The objective of this study was to examine correlations between the mitochondrial membrane potential and motility score. Cryopreserved semen samples from three bulls were donated to Tarleton State University for research purposes. Samples were thawed, placed under a phase contrast microscope, and analyzed by three individuals with varying levels of training for rough motility. These samples were then prepared with JC-1 dye according to manufacturer’s instructions. Two microliters of dye were added to a stock preparation of each sample. Samples were examined on a FACS Calibur flow cytometer at University of Texas Southwestern Core in Dallas, TX. Flow cytometry analysis was performed using FlowJo V10.7. Statistical analysis was performed using SAS v9.4. The Pearson correlation coefficient showed a strong, positive correlation (r = 0.90) between the mitochondrial membrane potential and motility (P = 0.28), thus indicating as the mitochondrial membrane potential increases, so does the rough motility score. These data represent a subset of a population that demonstrates the need of further research on the ability for spermatozoa to produce ATP and the correlation in forward, progressive motility. This research can provide a foundation in which future researchers may develop an assay that allows for testing of mitochondrial membrane potential by producers to select bulls with greater breeding potential.


2020 ◽  
Author(s):  
Meisam Zaferani ◽  
Farhad Javi ◽  
Amir Mokhtare ◽  
Alireza Abbaspourrad

AbstractThe study of navigational mechanisms used by mammalian sperm inside a microenvironment yields better understanding of sperm locomotion during the insemination process, which aids in the design of tools for overcoming infertility. Near- and far-field hydrodynamic interactions with nearby boundaries and rheotaxis are known to be some of the steering strategies that keep sperm on the correct path toward the egg. However, it is not known how the beating patterns of sperm may influence these navigational strategies. In this study, we investigate the effect of flagellar beating pattern on navigation of sperm cells both theoretically and experimentally using a two-step approach. We first isolate bovine sperm based on their rheotactic behavior in a zone with quiescent medium using a microfluidic system. This step ensures that the swimmers are able to navigate upstream and have motilities higher than a selected value, even though they feature various flagellar beating patterns. We then explore the flagellar beating pattern of these isolated sperm and their subsequent influence on boundary-dependent navigation. Our findings indicate that rheotaxis enables sperm to navigate upstream even in the presence of circular motion in their motility, whereas boundary-dependent navigation is more sensitive to the circular motion and selects for progressive motility. This finding may explain the clinical importance of progressive motility in semen samples for fertility, as the flow of mucus may not be sufficiently strong to orient the sperm cells throughout the process of insemination.SignificanceFinding the egg and moving toward it while traversing the complex structure of the female reproductive tract is necessary for mammalian sperm. Previous studies have shown how sperm use navigational steering mechanisms that are based on swimming upstream (i.e. rheotaxis) and along the boundaries of the female reproductive tract. We demonstrate that the performance of theses navigational mechanisms is associated with the primary characteristics of sperm motility. In fact, sperm rheotaxis is more sensitive to the motility and thus average velocity of sperm while navigation via rigid boundaries is more sensitive to the flagellar beating pattern and selects for symmetric beating. Our results can be expanded to other autonomous microswimmers and their subsequent navigation mechanisms.


Reproduction ◽  
2014 ◽  
Vol 147 (3) ◽  
pp. 347-356 ◽  
Author(s):  
H Rotfeld ◽  
P Hillman ◽  
D Ickowicz ◽  
H Breitbart

To enable fertilization, spermatozoa must undergo several biochemical processes in the female reproductive tract, collectively called capacitation. These processes involve protein kinase A (PKA)-dependent protein tyrosine phosphorylation including phosphatidylinositol-3-kinase (PI3K). It is not known how PKA, a serine/threonine (S/T) kinase, mediates tyrosine phosphorylation of proteins. We recently showed that inhibition of S/T phosphatase 1 (PP1) causes a significant increase in phospho-PI3K. In this study, we propose a mechanism by which PKA and PP1 mediate an increase in PI3K tyrosine phosphorylation and implicate calmodulin-dependent kinase II (CaMKII) in this process. Inhibition of sperm PP1 or PKC, stimulated CaMKII phosphorylation/activation, and inhibition of PKC enhanced PP1 phosphorylation/inactivation. Inhibition of CaMKII, using KN-93, caused significant reduction in phospho-PP1, indicating its activation. Moreover, KN-93 prevented the dephosphorylation/inactivation of PKC. We therefore suggest that CaMKII inhibits PKC, leading to PP1 inhibition and the reciprocal auto-activation of CaMKII. Thus, CaMKII can regulate its own activation by inhibiting the PKC/PP1 cascade. Inhibition of Src family kinases (SFK) caused significant inhibition of CaMKII and PP1 phosphorylation, suggesting that SFK activity results in PP1 inhibition and CaMKII activation. Activation of sperm PKA by 8Br-cAMP revealed an increase in phospho-CaMKII, which was inhibited by PKA inhibitor. Tyrosine phosphorylation of PI3K was stimulated by 8Br-cAMP and by PKC or PP1 inhibition and was abrogated by CaMKII inhibition. Furthermore, phosphorylation/activation of the tyrosine kinase Pyk2 was enhanced by PP1 inhibition, and this activation is blocked by CaMKII inhibition. Thus, PKA activates Src, which inhibits PP1, leading to CaMKII and Pyk2 activation, resulting in PI3K tyrosine phosphorylation/activation.


2007 ◽  
Vol 19 (1) ◽  
pp. 103 ◽  
Author(s):  
S. S. Suarez

Artificial insemination with sexed semen, in vitro fertilisation and intracytoplasmic sperm injection have been used to reproduce animals, but often not as successfully as natural mating. Learning more about how spermatozoa normally interact with the female tract can provide inspiration for developing improvements in assisted reproduction. The present review focuses on Bos taurus, because more is known about this species than others. At coitus, bull spermatozoa are deposited into the anterior vagina, where they rapidly enter the cervix. Cervical mucus quickly filters out seminal plasma from spermatozoa, unlike most assisted reproduction protocols. Spermatozoa that reach the uterus may require certain cell surface proteins to swim through the uterotubal junction. Shortly after passing through the junction, most spermatozoa are trapped in a storage reservoir by binding to oviducal epithelium, in the case of cattle via bovine seminal plasma (BSP) proteins coating the sperm head. As ovulation approaches, spermatozoa capacitate and shed BSP proteins. This reduces sperm binding to the epithelium and releases them from storage. Motility hyperactivation assists spermatozoa in leaving the storage reservoir, swimming through oviducal mucus and the cumulus oophorus, and penetrating the oocyte zona pellucida. Chemotactically regulated switching between asymmetrical (i.e. hyperactivated) and symmetrical flagellar beating may also guide spermatozoa to the oocyte.


2020 ◽  
Vol 151 ◽  
pp. 01005
Author(s):  
Vincentia T. Yoelinda ◽  
Raden I. Arifiantini ◽  
Muhammad Agil ◽  
Dedi R. Setiadi ◽  
Yohana T. Hastuti ◽  
...  

Semen collection in wild animals may be challenging for some methods such as electro ejaculator may cause pain and distress to the animals. Transrectal massage has been widely used in domestic and wild animals semen collection. Even though an artificial vagina may provide a condition that mimics the female reproductive tract and known to provide better results in some species, the application may face obstacles in the field. This study was conducted to evaluate the possibility of modified semen collection in banteng bull by combining the transrectal massage method followed by the use of an artificial vagina. The bull was habituated and trained for semen collection in chute under veterinarian supervision in Taman Safari Indonesia, Cisarua, Bogor, West Java. Semen samples from one Javan banteng bull were collected once a week. Banteng bull showed stud and penile protrusion during semen collection. Watery semen with volume ranged from 12 ml were successfully collected, with sperm progressive motility ranged from 25%-40%. Our study also showed sperm abnormalities comprising 18.11% abnormal sperm heads, 28.82% abnormal sperm tails and 0.94% teratoid form. The results demonstrated the possibility of this modified method as an alternative procedure for semen collection in banteng bull which may also be useful for other wild animals in field conditions


Zygote ◽  
2010 ◽  
Vol 19 (1) ◽  
pp. 21-30 ◽  
Author(s):  
Yoku Kato ◽  
Sugita Shoei ◽  
Yoshikazu Nagao

SummaryMammalian sperm undergo a series of biochemical transformations in the female reproductive tract that are collectively known as capacitation. One of the key processes involved in capacitation is the activation of sperm motility. Here, we investigated the capacitation and fertility status of activated sperm which had been cultured in media containing methyl-β-cyclodextrin (MBCD). In order to do this, single activated sperm were caught using a micropipette and stained with chlortetracycline (CTC). Firstly, we investigated the effects of preincubation upon motility, capacitation of activated sperm and fertility. Culture in preincubation media supplemented with MBCD increased the rates of activation and fertilization compared with sperm cultured by control methods (p < 0.05). Following capture, individual activated sperm mostly exhibited a pattern characteristic of capacitation.Secondly we examined the effects of culturing sperm in media with or without glucose (G) and pyruvate acid (P) upon activated motility, the capacitation of activated sperm and fertility. Supplementation of culture media with G and P resulted in higher proportions of activated sperm and increased fertilization rates compared to culture without G and P (p < 0.05). Most of the sperm activated by culture in G and P exhibited patterns characteristic of capacitation. Without G and P, individual activated sperm mostly exhibited patterns characteristic of the acrosome reaction (p < 0.05). In conclusion, activated sperm exhibited patterns characteristic of capacitation. In addition, sperm activated in media containing an energy source (glucose and pyruvate acid) appeared to exhibit acrosome reactiveness and fertility.


Author(s):  
Mai M. Said ◽  
Ramesh K. Nayak ◽  
Randall E. McCoy

Burgos and Wislocki described changes in the mucosa of the guinea pig uterus, cervix and vagina during the estrous cycle investigated by transmission electron microscopy. More recently, Moghissi and Reame reported the effects of progestational agents on the human female reproductive tract. They found drooping and shortening of cilia in norgestrel and norethindrone- treated endometria. To the best of our knowledge, no studies concerning the effects of mestranol and norethindrone given concurrently on the three-dimensional surface features on the uterine mucosa of the guinea pig have been reported. The purpose of this study was to determine the effect of mestranol and norethindrone on surface ultrastructure of guinea pig uterus by SEM.Seventy eight animals were used in this study. They were allocated into two groups. Group 1 (20 animals) was injected intramuscularly 0.1 ml vegetable oil and served as controls.


Author(s):  
R.P. Apkarian ◽  
J.S. Sanfilippo

The synthetic androgen danazol, is an isoxazol derivative of ethisterone. It is utilized in the treatment of endometriosis, fibrocystic breast disease, and has a potential use as a contraceptive. A study was designed to evaluate the ultrastructural changes associated with danazol therapy in a rat model. The preliminary investigation of the distal segment of the rat uterine horn was undertaken as part of a larger study intended to elucidate the effects of danazol on the female reproductive tract.Cross-sections (2-3 mm in length) of the distal segment of the uterine horn from sixteen Sprague-Dawley rats were prepared for SEM. Ten rats in estrus served as controls and six danazol treated rats were noted to have alterations of the estrus cycle i.e. a lag in cycle phase or noncycling patterns. Specimens were fixed in 3% glutaraldehyde in 0.05M phosphate buffer containing CaCl2 at pH 7.0-7.4 and chilled to 4°C. After a brief wash in distilled water, specimens were passed through a graded series of ethanol, critical point dryed in CO2 from absolute ethanol, and coated with 6nm Au. Observations were made with an IS1-40 SEM operated at 15kV.


Author(s):  
Lawrence M. Roth

The female reproductive tract may be the site of a wide variety of benign and malignant tumors, as well as non-neoplastic tumor-like conditions, most of which can be diagnosed by light microscopic examination including special stains and more recently immunoperoxidase techniques. Nevertheless there are situations where ultrastructural examination can contribute substantially to an accurate and specific diagnosis. It is my opinion that electron microscopy can be of greatest benefit and is most cost effective when applied in conjunction with other methodologies. Thus, I have developed an approach which has proved useful for me and may have benefit for others. In cases where it is deemed of potential value, glutaraldehyde-fixed material is obtained at the time of frozen section or otherwise at operation. Coordination with the gynecologic oncologist is required in the latter situation. This material is processed and blocked and is available if a future need arises.


Sign in / Sign up

Export Citation Format

Share Document