scholarly journals Nuclear Transport Factor 2 (NTF2) suppresses WM983B metastatic melanoma by modifying cell migration, metastasis, and gene expression

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lidija D. Vuković ◽  
Pan Chen ◽  
Sampada Mishra ◽  
Karen H. White ◽  
Jason P. Gigley ◽  
...  

AbstractWhile changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in WM983B metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and prolongs survival of mice. NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration, and increasing NTF2 expression leads to changes in nuclear size, nuclear lamin A levels, and chromatin organization. Thus, ectopic expression of NTF2 in WM983B metastatic melanoma abrogates phenotypes associated with advanced stage cancer both in vitro and in vivo, concomitantly altering nuclear and chromatin structure and generating a gene expression profile with characteristics of primary melanoma. We propose that NTF2 is a melanoma tumor suppressor and could be a novel therapeutic target to improve health outcomes of melanoma patients.

2020 ◽  
Author(s):  
Lidija D. Vuković ◽  
Karen H. White ◽  
Jason P. Gigley ◽  
Daniel L. Levy

SUMMARYWhile changes in nuclear structure and organization are frequently observed in cancer cells, relatively little is known about how nuclear architecture impacts cancer progression and pathology. To begin to address this question, we studied Nuclear Transport Factor 2 (NTF2) because its levels decrease during melanoma progression. We show that increasing NTF2 expression in metastatic melanoma cells reduces cell proliferation and motility while increasing apoptosis. We also demonstrate that increasing NTF2 expression in these cells significantly inhibits metastasis and increases survival of mice. Mechanistically, we show that NTF2 levels affect the expression and nuclear positioning of a number of genes associated with cell proliferation and migration. We propose that by decreasing nuclear size and/or lamin A nuclear localization, ectopic expression of NTF2 in metastatic melanoma alters chromatin organization to generate a gene expression profile with characteristics of primary melanoma, concomitantly abrogating several phenotypes associated with advanced stage cancer both in vitro and in vivo. Thus NTF2 acts as a melanoma tumor suppressor to maintain proper nuclear structure and gene expression and could be a novel therapeutic target to improve health outcomes of melanoma patients.


Author(s):  
Chen Du ◽  
Caihong Lv ◽  
Yue Feng ◽  
Siwen Yu

Abstract Background Accumulating evidence supports that lysine-specific demethylase 5 (KDM5) family members act as oncogenic drivers. This study was performed to elucidate the potential effects of KDM5A on prostate cancer (PCa) progression via the miR-495/YTHDF2/m6A-MOB3B axis. Methods The expression of KDM5A, miR-495, YTHDF2 and MOB3B was validated in human PCa tissues and cell lines. Ectopic expression and knockdown experiments were developed in PCa cells to evaluate their effects on PCa cell proliferation, migration, invasion and apoptosis. Mechanistic insights into the interaction among KDM5A, miR-495, YTHDF2 and MOB3B were obtained after dual luciferase reporter, ChIP, and PAR-CLIP assays. Me-RIP assay was used to determine m6A modification level of MOB3B mRNA in PCa cells. Mouse xenograft models of PCa cells were also established to monitor the tumor growth. Results KDM5A was highly expressed in human PCa tissues and cell lines. Upregulated KDM5A stimulated PCa cell proliferation, migration and invasion, but reduced cell apoptosis. Mechanistically, KDM5A, as a H3K4me3 demethylase, bound to the miR-495 promoter, which led to inhibition of its transcription and expression. As a target of miR-495, YTHDF2 could inhibit MOB3B expression by recognizing m6A modification of MOB3B mRNA and inducing mRNA degradation. Furthermore, KDM5A was found to downregulate MOB3B expression, consequently augmenting PCa cell proliferation, migration and invasion in vitro and promoting tumor growth in vivo via the miR-495/YTHDF2 axis. Conclusion In summary, our study highlights the potential of histone demethylase KDM5A activity in enhancing PCa progression, and suggests KDM5A as a promising target for PCa treatment.


2021 ◽  
Author(s):  
Can Chen ◽  
Yi Zong ◽  
Jiaojiao Tang ◽  
Ruisheng Ke ◽  
Lizhi Lv ◽  
...  

Background: The aim of this study was to investigate the role of miR-369-3p in hepatocellular carcinoma (HCC). Materials & methods: The expression levels of miR-369-3p were detected using the quantitative real-time reverse transcription-PCR analysis. The cell counting kit-8 and transwell assays were used to explore the effects of miR-369-3p on cell proliferation, migration and invasion of HCC cells. Results: The miR-369-3p expression was downregulated in HCC tissues and cell lines, in comparison to the normal controls, respectively. In vitro, overexpression of miR-369-3p in Hep 3B and Huh7 cells inhibited cell proliferation, migration and invasion. SOX4 was a direct target of miR-369-3p. Conclusion: Our results suggested that miR-369-3p may be a tumor suppressor in HCC by targeting SOX4.


2018 ◽  
Vol 50 (2) ◽  
pp. 612-628 ◽  
Author(s):  
Yaodong Zhang ◽  
Guwei Ji ◽  
Sheng Han ◽  
Zicheng Shao ◽  
Zefa Lu ◽  
...  

Background/Aims: Aberrant expression of Tip60 is associated with progression in many cancers. However, the role of Tip60 in cancer progression remains contradictory. The aim of this study was to investigate the clinical significance, biological functions and underlying mechanisms of Tip60 deregulation in cholangiocarcinoma (CCA) for the first time. Methods: Quantitative real-time PCR (QRT-PCR), western blotting and immunohistochemistry staining (IHC) were carried out to measure Tip60 expression in CCA tissues and cell lines. Kaplan–Meier analysis and the log-rank test were used for survival analysis. In vitro, cell proliferation was evaluated by flow cytometry and CCK-8, colony formation, and EDU assays. Migration/ invasion was evaluated by trans-well assays. Phosphokinase array was used to confirm the dominant signal regulated by Tip60. Tumor growth and metastasis were demonstrated in vivo using a mouse model. Results: Tip60 was notably downregulated in CCA tissues, which was associated with greater tumor size, venous invasion, and TNM stage. Down-regulation of Tip60 was associated with tumor progression and poorer survival in CCA patients. In vitro and in vivo studies demonstrated that Tip60 suppressed growth and metastasis throughout the progression of CCA. We further identified the PI3K/AKT pathway as a dominant signal of Tip60 and suggested that Tip60 regulated CCA cell proliferation and metastasis via PT3K-AKT pathway. Pearson analysis revealed that PTEN was positively correlated with the Tip60 level in CCA tissues. Conclusion: Tip60, as a tumor suppressor in CCA via the PI3K/AKT pathway, might be a promising therapeutic target or prognostic marker for CCA.


2021 ◽  
Author(s):  
Wentao Li ◽  
Ismatullah Soufiany ◽  
Xiao Lyu ◽  
Lin Zhao ◽  
Chenfei Lu ◽  
...  

Abstract Background: Mounting evidences have shown the importance of lncRNAs in tumorigenesis and cancer progression. LBX2-AS1 is an oncogenic lncRNA that has been found abnormally expressed in gastric cancer and lung cancer samples. Nevertheless, the biological function of LBX2-AS1 in glioblastoma (GBM) and potential molecular mechanism are largely unclear. Methods: Relative levels of LBX2-AS1 in GBM samples and cell lines were detected by qRT-PCR and FISH. In vivo and in vitro regulatory effects of LBX2-AS1 on cell proliferation, epithelial-to-mesenchymal transition (EMT) and angiogenesis in GBM were examined through xenograft models and functional experiments, respectively. The interaction between Sp1 and LBX2-AS1 was assessed by ChIP. Through bioinformatic analyses, dual-luciferase reporter assay, RIP and Western blot, the regulation of LBX2-AS1 and miR-491-5p on the target gene leukemia Inhibitory factor (LIF) was identified. Results: LBX2-AS1 was upregulated in GBM samples and cell lines, and its transcription was promoted by binding to the transcription factor Sp1. As a lncRNA mainly distributed in the cytoplasm, LBX2-AS1 upregulated LIF, and activated the LIF/STAT3 signaling by exerting the miRNA sponge effect on miR-491-5p, thus promoting cell proliferation, EMT and angiogenesis in GBM. Besides, LBX2-AS1 was unfavorable to the progression of glioma and the survival. Conclusion: Upregulated by Sp1, LBX2-AS1 promotes the progression of GBM by targeting the miR-491-5p/LIF axis. It is suggested that LBX2-AS1 may be a novel diagnostic biomarker and therapeutic target of GBM.


Author(s):  
Jiewei Lin ◽  
Shuyu Zhai ◽  
Siyi Zou ◽  
Zhiwei Xu ◽  
Jun Zhang ◽  
...  

Abstract Background FLVCR1-AS1 is a key regulator of cancer progression. However, the biological functions and underlying molecular mechanisms of pancreatic cancer (PC) remain unknown. Methods FLVCR1-AS1 expression levels in 77 PC tissues and matched non-tumor tissues were analyzed by qRT-PCR. Moreover, the role of FLVCR1-AS1 in PC cell proliferation, cell cycle, and migration was verified via functional in vitro and in vivo experiments. Further, the potential competitive endogenous RNA (ceRNA) network between FLVCR1-AS1 and KLF10, as well as FLVCR1-AS1 transcription levels, were investigated. Results FLVCR1-AS1 expression was low in both PC tissues and PC cell lines, and FLVCR1-AS1 downregulation was associated with a worse prognosis in patients with PC. Functional experiments demonstrated that FLVCR1-AS1 overexpression significantly suppressed PC cell proliferation, cell cycle, and migration both in vitro and in vivo. Mechanistic investigations revealed that FLVCR1-AS1 acts as a ceRNA to sequester miR-513c-5p or miR-514b-5p from the sponging KLF10 mRNA, thereby relieving their suppressive effects on KLF10 expression. Additionally, FLVCR1-AS1 was shown to be a direct transcriptional target of KLF10. Conclusions Our research suggests that FLVCR1-AS1 plays a tumor-suppressive role in PC by inhibiting proliferation, cell cycle, and migration through a positive feedback loop with KLF10, thereby providing a novel therapeutic strategy for PC treatment.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3607-3616 ◽  
Author(s):  
Y. Chen ◽  
J.R. Cardinaux ◽  
R.H. Goodman ◽  
S.M. Smolik

Hedgehog (HH) is an important morphogen involved in pattern formation during Drosophila embryogenesis and disc development. cubitus interruptus (ci) encodes a transcription factor responsible for transducing the hh signal in the nucleus and activating hh target gene expression. Previous studies have shown that CI exists in two forms: a 75 kDa proteolytic repressor form and a 155 kDa activator form. The ratio of these forms, which is regulated positively by hh signaling and negatively by PKA activity, determines the on/off status of hh target gene expression. In this paper, we demonstrate that the exogenous expression of CI that is mutant for four consensus PKA sites [CI(m1-4)], causes ectopic expression of wingless (wg) in vivo and a phenotype consistent with wg overexpression. Expression of CI(m1-4), but not CI(wt), can rescue the hh mutant phenotype and restore wg expression in hh mutant embryos. When PKA activity is suppressed by expressing a dominant negative PKA mutant, the exogenous expression of CI(wt) results in overexpression of wg and lethality in embryogenesis, defects that are similar to those caused by the exogenous expression of CI(m1-4). In addition, we demonstrate that, in cell culture, the mutation of any one of the three serine-containing PKA sites abolishes the proteolytic processing of CI. We also show that PKA directly phosphorylates the four consensus phosphorylation sites in vitro. Taken together, our results suggest that positive hh and negative PKA regulation of wg gene expression converge on the regulation of CI phosphorylation.


2020 ◽  
Vol 13 (9) ◽  
pp. 208
Author(s):  
Min-Hee Kim ◽  
Tae Hyeong Lee ◽  
Jin Soo Lee ◽  
Dong-Jun Lim ◽  
Peter Chang-Whan Lee

Hypoxia-inducible factor (HIF)-1α plays an important role in cancer progression. In various cancers, including thyroid cancer, overexpression of HIF-1α is related to poor prognosis or treatment response. However, few studies have investigated the role of HIF-1α inhibition in thyroid cancer progression. We evaluated the utility of the HIF-1α inhibitor IDF-11774 in vitro utilizing two thyroid cancer cell lines, K1 and BCPAP. Both cell lines were tested to elucidate the effects of IDF-11774 on cell proliferation and migration using soft agar and invasion assays. Here, we found that a reduction of HIF-1α expression in BCPAP cells was observed after treatment with IDF-11774 in a dose-dependent manner. Moreover, cell proliferation, migration, and anchorage-independent growth were effectively inhibited by IDF-11774 in BCPAP cells but not in K1 cells. Additionally, invasion of BCPAP but not K1 cells was controlled with IDF-11774 in a dose-dependent manner. Our findings suggest that promoting the degradation of HIF-1α could be a strategy to manage progression and that HIF-1α inhibitors are potent drugs for thyroid cancer treatment.


Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 231-242 ◽  
Author(s):  
Craig Smith ◽  
Debbie Berg ◽  
Sue Beaumont ◽  
Neil T Standley ◽  
David N Wells ◽  
...  

During somatic cell nuclear transfer (NT), the transcriptional status of the donor cell has to be reprogrammed to reflect that of an embryo. We analysed the accuracy of this process by comparing transcript levels of four developmentally important genes (Oct4,Otx2,Ifitm3,GATA6), a gene involved in epigenetic regulation (Dnmt3a) and three housekeeping genes (β-actin, β-tubulinandGAPDH) in 21 NT blastocysts with that in genetically half-identicalin vitroproduced (IVP,n=19) andin vivo(n=15) bovine embryos. We have optimised an RNA-isolation and SYBR-green-based real-time RT-PCR procedure allowing the reproducible absolute quantification of multiple genes from a single blastocyst. Our data indicated that transcript levels did not differ significantly between stage and grade-matched zona-free NT and IVP embryos except for Ifitm3/Fragilis, which was expressed at twofold higher levels in NT blastocysts.Ifitm3expression is confined to the inner cell mass at day 7 blastocysts and to the epiblast in day 14 embryos. No ectopic expression in the trophectoderm was seen in NT embryos. Gene expression in NTand IVP embryos increased between two- and threefold for all eight genes from early to late blastocyst stages. This increase exceeded the increase in cell number over this time period indicating an increase in transcript number per cell. Embryo quality (morphological grading) was correlated to cell number for NT and IVP embryos with grade 3 blastocysts containing 30% fewer cells. However, only NT embryos displayed a significant reduction in gene expression (50%) with loss of quality. Variability in gene expression levels was not significantly different in NT, IVP orin vivoembryos but differed among genes, suggesting that the stringency of regulation is intrinsic to a gene and not affected by culture or nuclear transfer.Oct4levels exhibited the lowest variability. Analysing the total variability of all eight genes for individual embryos revealed thatin vivoembryos resembled each other much more than did NT and IVP blastocysts. Furthermore,in vivoembryos, consisting of 1.5-fold more cells, generally contained two- to fourfold more transcripts for the eight genes than did their cultured counterparts. Thus, culture conditions (in vivoversusin vitro) have greater effects on gene expression than does nuclear transfer when minimising genetic heterogeneity.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1439
Author(s):  
Hyeon-Gu Kang ◽  
Won-Jin Kim ◽  
Myung-Giun Noh ◽  
Kyung-Hee Chun ◽  
Seok-Jun Kim

Spondin-2 (SPON2) is involved in cancer progression and metastasis of many tumors; however, its role and underlying mechanism in gastric cancer are still obscure. In this study, we investigated the role of SPON2 and related signaling pathway in gastric cancer progression and metastasis. SPON2 expression levels were found to be upregulated in gastric cancer cell lines and patient tissues compared to normal gastric epithelial cells and normal controls. Furthermore, SPON2 silencing was observed to decrease cell proliferation and motility and reduce tumor growth in xenograft mice. Conversely, SPON2 overexpression was found to increase cell proliferation and motility. Subsequently, we focused on regulatory mechanism of SPON2 in gastric cancer. cDNA microarray and in vitro study showed that Notch signaling is significantly correlated to SPON2 expression. Therefore, we confirmed how Notch signaling pathway regulate SPON2 expression using Notch signaling-related transcription factor interaction and reporter gene assay. Additionally, activation of Notch signaling was observed to increase cell proliferation, migration, and invasion through SPON2 expression. Our study demonstrated that Notch signaling-mediated SPON2 upregulation is associated with aggressive progression of gastric cancer. In conclusion, we suggest upregulated SPON2 via Notch signaling as a potential target gene to inhibit gastric cancer progression.


Sign in / Sign up

Export Citation Format

Share Document